Beyond circular trigonometry: Parabolic functions from geometric identities

Authors

  • Laith H. M. Al-ossmi Department of Survey Engineering, College of Engineering, University of Thi-Qar, Thi-Qar, Al-Nasiriya city 370001, Iraq https://orcid.org/0000-0002-6145-9478

DOI:

https://doi.org/10.35316/alifmatika.2025.v7i1.1-33

Keywords:

Applied Geometry, Conic sections, Euler’s formula, Geometric identities, Parabolic trigonometry

Abstract

This paper presents an innovative extension of trigonometric functions to parabolic geometry, introducing the parabolic sine (sinp u) and parabolic cosine (cosp u) functions. Geometrically, sinp u and cosp u are defined via the relationship between a point on a parabola and its focus: sinp u represents the vertical displacement ratio, while cosp u corresponds to the horizontal displacement ratio, normalized by the focal distance. These functions generalize circular trigonometry to a parabolic framework, preserving key structural identities while exhibiting unique behaviors, such as fixed asymptotic values under angle variation. The objective of this study is to establish a rigorous foundation for parabolic trigonometry, derive its core identities, and demonstrate its applicability. Using a geometric-analytic approach, we redefine trigonometric concepts via parabola-centric constructions, adapt Euler’s formula to parabolic segments, and derive exponential representations of sinp u and cosp u. This method leverages differential geometry and algebraic invariance to ensure consistency with classical trigonometry while extending its scope. Key results include: (1) Proofs of sinp u, and cosp u; (2) Exponential forms: sinp u, and cosp u; (3) As the parabolic imaginary unit. Unlike circular trigonometry adaptations, our approach provides intrinsic geometric consistency with parabolic functions, enabling exact solutions for parabolic arc lengths and focal properties. This contrasts with numerical or linearized methods that sacrifice accuracy for simplicity. Theoretically, unifies parabolic geometry with analytic trigonometry, opening pathways for conic-section-generalized trigonometry, enhancing modeling in optics (parabolic mirrors), structural engineering (cable-supported arches), and ballistics (trajectory optimization), offering a novel pedagogical tool to bridge classical and modern geometry.

Downloads

Download data is not yet available.

References

Al-ossmi, L. (2023). Elementary Treatise on Melted-like Curves Derived from Center Ellipse and Circle. Iraqi Journal For Computer Science and Mathematics, 4(1), 114–129. https://doi.org/10.52866/ijcsm.2023.01.01.009

Al-Ossmi, L. H. M. (2024). A Study on New Roulette and Special Forms of Cycloid and Laithoidal Curves. Al-Kitab Journal for Pure Sciences, 8(02), 153–170. https://doi.org/10.32441/kjps.08.02.p13

Ammad, M., Misro, M. Y., & Ramli, A. (2022). A novel generalized trigonometric Bézier curve: Properties, continuity conditions and applications to the curve modeling. Mathematics and Computers in Simulation, 194(1), 744–763. https://doi.org/10.1016/j.matcom.2021.12.011

Azhary Masta, A., Nur, M., & Gunawan, H. (2018). Generalized Hölder’s Inequality in Orlicz Spaces. ArXiv E-Prints, 1–10. https://doi.org/10.48550/arXiv.1809.00788

Cannone, M. (2005). Harmonic analysis tools for solving the incompressible Navier–Stokes equations. In Handbook of mathematical fluid dynamics (Vol. 3, pp. 161–244). Elsevier. https://doi.org/10.1016/S1874-5792(05)80006-0

Charkaoui, A., & Alaa, N. E. (2022). Nonnegative weak solution for a periodic parabolic equation with bounded Radon measure. Rendiconti Del Circolo Matematico Di Palermo Series 2, 71(1), 459–467. https://doi.org/10.1007/s12215-021-00614-w

Chemin, J.-Y. (2005). Two-dimensional Euler system and the vortex patches problem. In Handbook of mathematical fluid dynamics (Vol. 3, pp. 83–160). Elsevier. https://doi.org/10.1016/S1874-5792(05)80005-9

Dattoli, G., Migliorati, M., Quattromini, M., & Ricci, P. E. (2011). The Parabolic-Trigonometric Functions. ArXiv Preprint ArXiv:1102.1563, 1–16. https://doi.org/10.48550/arXiv.1102.1563

Fahim, H., Charkaoui, A., & Alaa, N. E. (2021). Parabolic systems driven by general differential operators with variable exponents and strong nonlinearities with respect to the gradient. Journal of Elliptic and Parabolic Equations, 7(1), 199–219. https://doi.org/10.1007/s41808-021-00101-4

Faraoni, V., & Faraoni, V. (2013). Tensors in Minkowski Spacetime. Special Relativity, 111–135. https://doi.org/10.1007/978-3-319-01107-3_5

Grinshpan, A. Z. (2010). Weighted inequalities and negative binomials. Advances in Applied Mathematics, 45(4), 564–606. https://doi.org/10.1016/j.aam.2010.04.004

Jeffrey, A., & Dai, H. H. (2008). Handbook of mathematical formulas and integrals. Elsevier.

Kuttler, K. (2007). An introduction to linear algebra. Brigham Young University: Provo, UT, USA.

Larson, R., & Edwards, B. H. (2013). Calculus of a single variable. Cengage Learning.

Larson, R., Edwards, B. H., & Falvo, D. C. (2013). Calculus: an applied approach. Houghton Mifflin Company.

Lyachek, Y. (2020). An Efficient Method for Forming Parabolic Curves and Surfaces. Mathematics, 8(4), 592. https://doi.org/10.3390/math8040592

Menzler-Trott, E. (2007). Logic’s lost genius: the life of Gerhard Gentzen (Vol. 33). American Mathematical Soc.

Nielsen, F., Sun, K., & Marchand-Maillet, S. (2017). On Hölder projective divergences. Entropy, 19(3), 122. https://doi.org/10.3390/e19030122

Novruzi, A. (2023). Sobolev spaces. In A Short Introduction to Partial Differential Equations (pp. 93–121). Springer. https://doi.org/10.1007/978-3-031-39524-6_6

Papageorgiou, N. S., Rădulescu, V. D., & Repovš, D. D. (2019). Nonlinear analysis-theory and methods. Springer.

Sarfraz, N., Aslam, M., & Jarad, F. (2021). Boundedness for Commutators of Rough p‐Adic Hardy Operator on p‐Adic Central Morrey Spaces. Journal of Function Spaces, 2021(1), 1–5. https://doi.org/10.1155/2021/4886197

Spíchal, L. (2022). About the harmonic mean on the unit parabola. Symmetry: Culture and Science, 33(1), 45–54. https://doi.org/10.26830/symmetry_2022_1_045

Stewart, J. (2016). Calculus: early transcendentals 8th edition. Cengage Learning.

Vallo, D., Fulier, J., & Rumanova, L. (2022). Note on Archimedes’ quadrature of the parabola. International Journal of Mathematical Education in Science and Technology, 53(4), 1025–1036. https://doi.org/10.1080/0020739X.2021.1889700

Vodop’yanov, S. K., & Kudryavtseva, N. A. (2019). Nonlinear potential theory for Sobolev spaces on Carnot groups. Siberian Mathematical Journal, 50(5), 803–819. https://doi.org/10.1007/s11202-009-0091-7

Vodopyanov, S. K. (2019). Isomorphisms of Sobolev spaces on Riemannian manifolds and quasiconformal mappings. Siberian Mathematical Journal, 60(5), 774–804. https://doi.org/10.1134/S0037446619050033

Zarco, A. M., & Pascual-Fuentes, F. (2023). Elements of the parabola in the three-dimensional space and applications in teaching through a project based on reflection of light. Modelling in Science Education and Learning, 16(2), 51–69. https://doi.org/10.4995/msel.2023.19283

Downloads

Published

2025-06-15

How to Cite

Al-ossmi, L. H. M. (2025). Beyond circular trigonometry: Parabolic functions from geometric identities. Alifmatika: Jurnal Pendidikan Dan Pembelajaran Matematika, 7(1), 1–33. https://doi.org/10.35316/alifmatika.2025.v7i1.1-33

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.