The high-accuracy geometric approximation of the ellipse's perimeter by the measuring right-angled triangle

Authors

  • Laith H. M. Al-ossmi Department of Survey Engineering, College of Engineering, University of Thi-Qar, Thi-Qar, Al-Nasiriya City 370001, Iraq https://orcid.org/0000-0002-6145-9478

DOI:

https://doi.org/10.35316/alifmatika.2025.v7i2.310-331

Keywords:

Conic Sections, Ellipse Perimeter, Geometric Approximation, Ramanujan's Approximations

Abstract

This article confronts the persistent challenge of determining the exact perimeter of an ellipse. It proposes a high-accuracy geometric approximation centred on a uniquely defined Measuring Right-Angled Triangle (MRAT). Constructed with specific spatial and angular properties, the MRAT is positioned at a distance of 2b/π from the centre of a reference circle and terminates at its circumference at a 45° angle. The ellipse's center is co-located with the circle's center. The resulting values were rigorously compared against classical Ramanujan approximations, and the PRI test and high-precision graphical analysis were used to confirm significant accuracy. This high-accuracy geometric approximation method offers a computationally efficient alternative to traditional algebraic methods, enhancing both theoretical understanding and applied precision.

Downloads

Download data is not yet available.

References

Abbott, P. (2009). On the perimeter of an ellipse. Mathematical Journal, 11(2), 172–185. https://content.wolfram.com/uploads/sites/19/2009/11/Abbott.pdf

Ahmedi, S. A. (2018). An exact formula for the perimeter of an ellipse. Independent Researcher, Rasht, Guillan, Iran, 415(56), 4678.

Al-Ossmi, L. H. M. (2022). Spectral CG algorithm for solving fuzzy nonlinear equations. Iraqi Journal for Computer Science and Mathematics, 3(1), 1-10. https://doi.org/10.52866/ijcsm.2022.01.01.001

Al-Ossmi, L. H. M. (2023). Measuring curvature method for the exact value of the ellipse perimeter. Eurasian Journal of Physics, Chemistry and Mathematics, 20(7), 27-44. https://geniusjournals.org/index.php/ejpcm/article/view/4695

Asaad, S. H., Ahmed, I. S., & Ebrahim, H. H. (2022). On finitely null-additive and finitely weakly null-additive relative to the σ–ring. Baghdad Science Journal, 19(5), 1148-1148. https://doi.org/10.21123/bsj.2022.5771

David D. Chung, and Richard Wolfgramm (2015). Maxillary arch perimeter prediction using Ramanujan's equation for the ellipse. American journal of orthodontics and dentofacial orthopedics, 147(2), 235-241. https://doi.org/10.1016/j.ajodo.2014.10.022

G. Molica Bisci et al. (2015). A Brezis–Nirenberg splitting approach for nonlocal fractional equations. Nonlinear Analysis: Theory, Methods & Applications, 119(6), 341-353. https://doi.org/10.1016/j.na.2014.10.025

J. Giacomoni, Pawan K. Mishra and K. Sreenadh. (2016). Critical growth fractional elliptic systems with exponential nonlinearity. Nonlinear Analysis: Theory, Methods & Applications, 136(5), 117-135. https://doi.org/10.1016/j.na.2016.02.003

Koshy, K. I. (2023). A new ellipse perimeter approximation formula that reduces the relative error to the order of 10⁻⁸. Bulletin of Mathematics and Statistics Research, 11(1), 25–31. http://www.bomsr.com/11.1.23/25-31%20K.%20Idicula%20Koshy.pdf

K. J. Brown (2005). The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calculus of variations and partial differential equations, 22(4), 483-494. https://doi.org/10.1007/s00526-004-0289-2

Mark B. Villarino (2008). Ramanujan's harmonic number expansion into negative powers of a triangular number. arXiv preprint arXiv: 0707.3950, 9(3), 1-14. https://doi.org/10.48550/arXiv.0707.3950

Qureshi, I., Akhtar, N., & Ahamad, D. (2020). Analytical expressions for curved surface area of revolution and arc-length of an ellipse: A hypergeometric mechanism. Transactions of the National Academy of Sciences of Azerbaijan, Series of Physical-Technical and Mathematical Sciences, Mathematics, 40(1), 152–160. https://doi.org/10.29228/proc.72

Rohman, H. A. (2022). Deriving the exact formula for perimeter of an ellipse using coordinate transformation. Jurnal Pendidikan dan Pembelajaran Matematika, 4(1), 1–16. https://doi.org/10.35316/alifmatika.2022.v4i1.1-16

Wang, M. K., Chu, H., & Chu, Y. M. (2021). On the approximation of some special functions in Ramanujan’s generalized modular equation with signature 3. Ramanujan Journal, 56(1), 1–22. https://doi.org/10.1007/s11139-021-00437-4

X. Uralde-Guinea et al. (2026) . Comparison between cylinder and ellipse at 0 degrees angle of attack for low Reynolds numbers. Measurement, 254(1), 1-8. https://doi.org/10.1016/j.measurement.2025.119250

X. Yu (2012). The Nehari manifold for elliptic equation involving the square root of the Laplacian. Journal of Differential Equations, 252(2), 1283-1308. https://doi.org/10.1016/j.jde.2011.09.015

Zhao, T., Wang, M., & Chu, Y. (2022). On the bounds of the perimeter of an ellipse. Acta Mathematica Scientia, 42(2), 491-501. https://doi.org/10.1007/s10473-022-0204-y

Downloads

Published

2025-12-15

How to Cite

Al-ossmi, L. H. M. (2025). The high-accuracy geometric approximation of the ellipse’s perimeter by the measuring right-angled triangle. Alifmatika: Jurnal Pendidikan Dan Pembelajaran Matematika, 7(2), 310–331. https://doi.org/10.35316/alifmatika.2025.v7i2.310-331

Similar Articles

You may also start an advanced similarity search for this article.