Cohen's kappa curves, new geometrical forms of dual curves

  • Laith H. M. Al-ossmi College of Engineering, Thi-qar University, Al-Nasiriya City 370001, Iraq https://orcid.org/0000-0002-6145-9478
  • Imad Ibrahim Dawood Mazaya University College, Al-Nasiriya City 370001, Iraq
Keywords: Cohen's Kappa, Dual Curves, Geometric Methods, Nodal Curves

Abstract

In this article, we introduce the concepts of taxicab and uniform products in the context of dual curves associated with Cohen's kappa, primarily defined by a set of inflection curvatures of an ellipse and a circle using parallel asymptotes. The novel curve under scrutiny, denominated as the "Like-Bulb Filament" (LBF) curve, is delineated as the locus of dual vertices originating from a couple of conic curvatures. The emergence of LBF transpires through the orchestrated arrangement of line segments emanating from a predetermined central focal point upon an elliptical form concomitant with a circular entity possessing a radius equivalent to the ellipse's minor axis. The LBF’s curve is intricately choreographed through the dynamic interplay of a constant unit circle and three asymptotic lines. Notably, two of these asymptotes achieve tangential intersections with the LBF curve, while the third gracefully traverses its central core. Additionally, we embark on a comprehensive algebraic examination complemented by a geometrically informed construction methodology. In these instances, a consistent conic curvature of the uint circle and an elliptical structure assume pivotal roles in the genesis of the LBF’s curve. Also, a geometric connection is speculated between these curve configurations and their relevance to engineering processes across fields. However, the document acknowledges the need for more intensive study on the presented traits. Hence, it emphasizes addressing the existing research gap in subsequent investigations.

Downloads

Download data is not yet available.

References

Al-ossmi, L. H. M. (2023). An elementary treatise on elliptic functions as trigonometry. Alifmatika: Jurnal Pendidikan Dan Pembelajaran Matematika, 5(1), 1–20. https://doi.org/10.35316/alifmatika.2023.v5i1.1-20

Bialy, M. (2022). Mather β-function for ellipses and rigidity. Entropy, 24(11), 1600. https://doi.org/10.3390/e24111600

Bobenko, A. I., Schief, W. K., & Techter, J. (2020). Checkerboard incircular nets: Laguerre geometry and parametrisation. Geometriae Dedicata, 204(1), 97–129. https://doi.org/10.1007/s10711-019-00449-x

Chan, M., Galatius, S., & Payne, S. (2021). Tropical curves, graph complexes, and top weight cohomology of ℳ_ {ℊ}. Journal of the American Mathematical Society, 34(2), 565–594. https://doi.org/10.1090/jams/965

da Silva, J. L. E., da Silva, G. B., & Ramos, R. V. (2020). The lambert-kaniadakis wκ function. Physics Letters A, 384(8), 126175. https://doi.org/10.1016/j.physleta.2019.126175

Findlen, P. (2011). Calculations of faith: mathematics, philosophy, and sanctity in 18th-century Italy (new work on Maria Gaetana Agnesi). Historia Mathematica, 38(2), 248–291. https://doi.org/10.1016/j.hm.2010.05.003

Fioretos, O. (2011). Historical institutionalism in international relations. International Organization, 65(2), 367–399. https://doi.org/10.1017/S0020818311000002

Ghuku, S., & Saha, K. N. (2019). A parametric study on geometrically nonlinear behavior of curved beams with single and double link rods, and supported on moving boundary. International Journal of Mechanical Sciences, 161(1), 105065. https://doi.org/10.1016/j.ijmecsci.2019.105065

Gilani, S. M., Abazari, N., & Yayli, Y. (2020). Characterizations of dual curves and dual focal curves in dual Lorentzian space $ D^{3} _ {1} $. Turkish Journal of Mathematics, 44(5), 1561–1577. https://doi.org/10.3906/mat-1909-6

Hašek, R. (2020). Exploration of dual curves using a dynamic geometry and computer algebra system. Mathematics in Computer Science, 14(1), 391–398. https://doi.org/10.1007/s11786-019-00433-4

Jin, W., Derr, T., Wang, Y., Ma, Y., Liu, Z., & Tang, J. (2021). Node similarity preserving graph convolutional networks. Proceedings of the 14th ACM International Conference on Web Search and Data Mining, 148–156. https://doi.org/10.1145/3437963.3441735

Karkucinska‐Wieckowska, A., Simoes, I. C. M., Kalinowski, P., Lebiedzinska‐Arciszewska, M., Zieniewicz, K., Milkiewicz, P., Górska‐Ponikowska, M., Pinton, P., Malik, A. N., & Krawczyk, M. (2022). Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. European Journal of Clinical Investigation, 52(3), 1–19. https://doi.org/10.1111/eci.13622

Lin, C.-C., & Yang, F.-L. (2018). A new image processing algorithm for three-dimensional angular velocity measurement and its application in a granular avalanche. Advanced Powder Technology, 29(3), 506–517. https://doi.org/10.1016/j.apt.2018.02.004

Lin, Y., Sun, K., Liu, S., Chen, X., Cheng, Y., Cheong, W., Chen, Z., Zheng, L., Zhang, J., & Li, X. (2019). Construction of CoP/NiCoP nano tadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Advanced Energy Materials, 9(36), 1901213. https://doi.org/10.1002/aenm.201901213

Liu, T. (2017). Ocular aberrations across the visual field during accommodation. Indiana University. https://ui.adsabs.harvard.edu/abs/2017PhDT........28L/abstract

Magnaghi-Delfino, P., & Norando, T. (2020). How to solve second-degree algebraic equations using geometry. Faces of Geometry. From Agnesi to Mirzakhani, 121–130. https://doi.org/10.1007/978-3-030-29796-1_11

Mary, H., & Brouhard, G. J. (2019). Kappa (κ): analysis of curvature in biological image data using B-splines. BioRxiv, 852772. https://doi.org/10.1101/852772

Miura, K. T., Gobithaasan, R. U., Salvi, P., Wang, D., Sekine, T., & Usuki, S. (2022). ϵκ-Curves: Controlled local curvature extrema. The Visual Computer: International Journal of Computer Graphics, 38(1), 2723–2738. https://doi.org/10.1007/s00371-021-02149-8

Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., & Sontag, D. (2017). Learning a health knowledge graph from electronic medical records. Scientific Reports, 7(1), 5994. https://doi.org/10.1038/s41598-017-05778-z

Saha, K. N. (2019). Evolving appropriate common engineering software: A case study. Proceedings of International Academic Conferences, 9110691. https://ideas.repec.org/p/sek/iacpro/9110691.html

Simon Wedlund, C., Volwerk, M., Beth, A., Mazelle, C., Möstl, C., Halekas, J., Gruesbeck, J. R., & Rojas‐Castillo, D. (2022). A fast bow shock location predictor‐estimator from 2D and 3D analytical models: Application to mars and the maven mission. Journal of Geophysical Research: Space Physics, 127(1), 1–31. https://doi.org/10.1029/2021JA029942

Soutter, A. K., Gilmore, A., & O’Steen, B. (2011). How do high school youths’ educational experiences relate to well-being? Towards a trans-disciplinary conceptualization. Journal of Happiness Studies, 12, 591–631. https://doi.org/10.1007/s10902-010-9219-5

Szubiakowski, J. P., & Włodarczyk, J. (2018). The solar dial in the olsztyn castle: its construction and relation to copernicus. Journal for the History of Astronomy, 49(2), 158–195. https://doi.org/10.1177/0021828618776057

Usman, M., Abbas, M., & Miura, K. T. (2020). Some engineering applications of new trigonometric cubic Bézier-like curves to free-form complex curve modeling. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 14(4), 1–15. https://doi.org/10.1299/jamdsm.2020jamdsm0048

Wang, D., Gobithaasan, R. U., Sekine, T., Usuki, S., & Miura, K. T. (2021). Interpolation of point sequences with extremum of curvature by log-aesthetic curves with G2 continuity. https://www.cad-journal.net/files/vol_18/CAD_18(2)_2021_399-410.pdf

Weil, A. B., Gutiérrez-Alonso, G., Johnston, S. T., & Pastor-Galán, D. (2013). Kinematic constraints on buckling a lithospheric-scale orocline along the northern margin of gondwana: A geologic synthesis. Tectonophysics, 582, 25–49. https://doi.org/10.1016/j.tecto.2012.10.006

Więckowska, B., Kubiak, K. B., Jóźwiak, P., Moryson, W., & Stawińska-Witoszyńska, B. (2022). Cohen’s kappa coefficient as a measure to assess classification improvement following the addition of a new marker to a regression model. International Journal of Environmental Research and Public Health, 19(16), 10213. https://doi.org/10.3390/ijerph191610213

Yan, Z., Schiller, S., & Schaefer, S. (2019). Circle reproduction with interpolatory curves at local maximal curvature points. Computer Aided Geometric Design, 72, 98–110. https://doi.org/10.1016/j.cagd.2019.06.002

Yücesan, A., & Tükel, G. Ö. (2020). A new characterization of dual general helices. 4th International Conference On Mathematics. https://www.researchgate.net/publication/348325667_A_New_Characterization_of_Dual_General_Helices

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1–38. https://doi.org/10.1145/3285029

Published
2023-12-15
How to Cite
Al-ossmi, L. H. M., & Dawood, I. I. (2023). Cohen’s kappa curves, new geometrical forms of dual curves. Alifmatika: Jurnal Pendidikan Dan Pembelajaran Matematika, 5(2), 226-246. https://doi.org/10.35316/alifmatika.2023.v5i2.226-246
Abstract viewed = 218 times
FULL TEXT PDF downloaded = 191 times