DERIVING THE EXACT FORMULA FOR PERIMETER OF AN ELLIPSE USING COORDINATE TRANSFORMATION
Abstract
The ellipse can be transformed into a circle by dilating the coordinates of the ellipse relative to the x-axis and y-axis. Therefore, this study aimed to derive the formula for the equation of the perimeter of an ellipse by using the transformation of an ellipse to a circle. This transformation was arranged so that the perimeter of the ellipse was equal to the perimeter of the circle. The type of research was in the review of books, articles, and relevant research reports. The results showed that the ellipse can be transformed into a circle while maintaining its perimeter. So, the perimeter of the ellipse was the same as the perimeter of the circle.
Downloads
References
A. Brannan, D., F. Esplen, M., & J. Gray, J. (2012). Geometry Second Edition (Second). New York: Cambridge University Press. https://www.cambridge.org/id/academic/subjects/mathematics/geometry-and-topology/geometry-2nd-edition
Abbott, P. (2009). On the Perimeter of an Ellipse. The Mathematica Journal, 11(2), 172-185. https://content.wolfram.com/uploads/sites/19/2009/11/Abbott.pdf
Adlaj, S. (2012). An Eloquent Formula for the Perimeter of an Ellipse. Notice of The AMS, 59(8), 1094–1099. https://doi.org/http://dx.doi.org/10.1090/noti879
Almkvist, P. G., & Berndt, B. (1988). Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary (1988). American Mathematical Monthly, 95(1), 585–608. https://doi.org/10.1007/978-3-319-32377-0
Alzer, H., & Qiu, S. L. (2004). Monotonicity theorems and inequalities for the complete elliptic integrals. Journal of Computational and Applied Mathematics, 172(2), 289–312. https://doi.org/10.1016/j.cam.2004.02.009
Archimedes. (2010). The Works of Archimedes Edited in Modern Notation with Introductory Chapters (T. L. Heath, ed.). New York: Cambridge University. https://www.cambridge.org/id/academic/subjects/physics/theoretical-physics-and-mathematical-physics/works-archimedes-edited-modern-notation-introductory-chapters?format=PB
B. Thomas, G. (2018). Thomas’ calculus (based on the original work by George B. Thomas, Jr., Massachusetts Institute of Technology, as revised by Joel Hass, University of California, Davis, Christopher Heil, Georgia Institute of Technology, Maurice D. Weir, Naval Postgraduate (Fourteenth). Pearson Education. https://search.library.uitm.edu.my/Record/wils_911908
B. Villarino, M. (2008). Ramanujan ’ s Perimeter of an Ellipse. http://arxiv.org/abs/math/0506384v1
Barnard, R. W., Pearce, K., & Schovanec, L. (2001). Inequalities for the Perimeter of an Ellipse. Journal of Mathematical Analysis and Application, 260(1), 295–306. https://doi.org/10.1006/jmaa.2000.7128
E. J. F. Primrose. (1973). Maximum Area and Perimeter of a Parallelogram in an Ellipse. The Mathematical Gazette, 57(402), 342–343. https://www.cambridge.org/core/journals/mathematical-gazette/article/3351-maximum-area-and-perimeter-of-a-parallelogram-in-an-ellipse/3008A43D1A6CDACBD5BD99BCBA5E7535
E. Pfiefer, R. (1988). Bounds on the Perimeter of an Ellipse via Minkowski Sums. The College Mathematics Journal, 19(4), 348–350. https://doi.org/10.1080/07468342.1988.11973137
Gusić, I. (2015). On the bounds for the perimeter of an ellipse. The Mathematical Gazette, 99(546), 540–541. https://doi.org/10.1017/mag.2015.102
Hilbert, D., & Cohn-Vossen, S. (2021). Geometry and The Imagination (Second). AMS Chelsea Publishing. http://michel.delord.free.fr/geoim.pdf
J. Purcell, E., & Varberg, D. (2016a). Kalkulus dan Geometri Analitis Jilid 1 (Edisi Ke-5). Jakarta: Penerbit Erlangga. https://repo.iainbatusangkar.ac.id/xmlui/handle/123456789/5650
J. Purcell, E., & Varberg, D. (2016b). Kalkulus dan Geometri Analitis Jilid 2 (Edisi Ke-5). Jakarta: Penerbit Erlangga. https://repo.iainbatusangkar.ac.id/xmlui/handle/123456789/5647
Jameson, G. . J. O. (2015). Inequalities for the perimeter of an ellipse. The Mathematical Gazette, 98(542), 227–234. https://doi.org/10.1017/S002555720000125X
Lockhart, P. (2012). Measurement. Massachusetts: The Belknap Press of Harvard University Pres. https://catalog.lib.kyushu-u.ac.jp/ja/recordID/3447461/
Mazer, A. (2010). The Ellipse : A historical and Mathematical Journey. New Jersey: John Wiley & Sons, Inc. https://elibrary.ru/item.asp?id=19467164
Parker, W. V, & Pryor, J. E. (1944). Polygons of Greatest Area Inscribed in an Ellipse. The American Mathematical Monthly, 51(4), 205–209. https://doi.org/10.1080/00029890.1944.11999068
Rohman, H. A., & Jupri, A. (2019). Investigating the Equation and the Area of Ellipse Using Circular Cylinder Section Approach. Universitas Pendidikan Indonesia, 4(1), 210-214. http://science.conference.upi.edu/proceeding/index.php/ICMScE/article/view/245
Copyright (c) 2022 Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
Author (s) who publish in Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika agree to the following terms:
- The Author (s) submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, Tarbiyah Faculty of Ibrahimy University as the publisher of the journal. Consecutively, author(s) still retain some rights to use and share their own published articles without written permission from Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Copyright encompasses rights to publish and provide the manuscripts in all forms and media for the purpose of publication and dissemination, and the authority to enforce the rights in the manuscript, for example in the case of plagiarism or in copyright infringement.
- Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika are the sole responsibility of their respective authors and advertisers.
- The Copyright Transfer Form can be downloaded here [Copyright Transfer Form Alifmatika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document to alifmatika[at]ibrahimy.ac.id or upload the scanned document in the comments column when sending the manuscript.