Ethnomathematics: The exploration of fractal geometry in Tian Ti Pagoda using the Lindenmayer system

Keywords: Ethnomathematics, Fractal Geometry, Lindenmayer System, Tian Ti Pagoda

Abstract

This study explores the concept of fractal geometry found in the Tian Ti Pagoda. Fractal geometry is a branch of mathematics describing the properties and shapes of various fractals. A qualitative method with an ethnographic approach is used in this study. Observation, field notes, interviews, documentation, and literature study obtained research data. The observation results were processed computationally using the Lindenmayer system method via the L-Studio application to view fractal shapes. The results show that the concept of fractal geometry is contained in the ornaments on the Tian Ti Pagoda. The length and angles of each part of the ornament influence the fractal shape of the Tian Ti Pagoda ornament. In addition, the length and angle modifications resulted in several variations of the Tian Ti Pagoda fractal. The findings from this study can be used as an alternative medium for learning mathematics lectures, especially in applied mathematics, dynamical systems, and computational geometry.

Downloads

Download data is not yet available.

References

Abu-Elwan, R. (2014). The effect of teaching chaos theory and fractal geometry on geometric reasoning skills of secondary students. International Journal of Research in Education Methodology, 6(2), 804–814. https://doi.org/10.24297/ijrem.v6i2.3876

Alghar, M. Z., Susanti, E., & Marhayati, M. (2022). Ethnomathematics: Arithmetic sequence patterns of minangkabau carving on singok gonjong. Jurnal Pendidikan Matematika (Jupitek), 5(2), 145–152. https://doi.org/10.30598/jupitekvol5iss2pp145-152

Bahar, A. K., & Maker, C. J. (2020). Culturally responsive assessments of mathematical skills and abilities: Development, field testing, and implementation. Journal of Advanced Academics, 31(3), 211–233. https://doi.org/10.1177/1932202X20906130

Bernard, J., & McQuillan, I. (2021). Techniques for inferring context-free Lindenmayer systems with genetic algorithm. Swarm and Evolutionary Computation, 64(100893), 1–12. https://doi.org/10.1016/j.swevo.2021.100893

Chowdary, P. S. R., Prasad, A. M., Rao, P. M., & Anguera, J. (2015). Design and performance study of Sierpinski fractal based patch antennas for multiband and miniaturization characteristics. Wireless Personal Communications, 83, 1713–1730. https://doi.org/10.1007/s11277-015-2472-5

d’Ambrosio, U. (2001). In my opinion: what is ethnomathematics, and how can it help children in schools? National Council of Teachers of Mathematics (NCTM), 7(6), 308–310. https://doi.org/10.5951/tcm.7.6.0308

Ditasona, C. (2018). Ethnomathematics exploration of the Toba community: Elements of geometry transformation contained in Gorga (ornament on Bataks house). In Ramli, M. Azhar, & R. Sumarmin (Ed.), IOP Conference Series: Materials Science and Engineering (pp. 1–6). Universitas Negeri Padang. https://doi.org/10.1088/1757-899X/335/1/012042

Dye, D. S. (2012). Chinese lattice designs. Courier Corporation.

Fitriza, R. (2018). Ethnomathematics pada ornamen rumah gadang minangkabau. Math Educa Journal, 2(2), 181–190. https://doi.org/10.15548/mej.v2i2.187

Gerdes, P. (2017). Interweaving geometry and art: Examples from africa. In K. Fenyvesi & T. Lähdesmäki (Ed.), Aesthetics of Interdisciplinarity: Art and Mathematics (pp. 181–195). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-57259-8_10

Juhari, J., & Alghar, M. Z. (2021). Modeling plant stems using the deterministic lindenmayer system. Journal Cauchy, 6(4), 286–295. https://doi.org/10.18860/ca.v6i4.11591

Juniati, D., & Budayasa, I. K. (2017). Pengembangan bahan ajar geometri fraktal berbasis eksperimen untuk meningkatkan kompetensi mahasiswa [Development of experimental-based fractal geometry teaching materials to improve student competence]. Jurnal Cakrawala Pendiidkan, 1(1), 24–33. https://doi.org/10.21831/cp.v36i1.11660

Kushwaha, N., & Kumar, R. (2013). An UWB fractal antenna with defected ground structure and swastika shape electromagnetic band gap. Progress In Electromagnetics Research B, 52, 383–403. https://doi.org/10.2528/PIERB13051509

Lee-Kalisch, J. (2018). The Transmission of ornaments in buddhist art: On the meander or huiwen. Hualin International Journal of Buddhist Studies, 1(2), 111–130. https://doi.org/10.15239/hijbs.01.02.04

Lee, S. Y., & Tiong, K. M. (2013). Algorithmic generation of Chinese lattice designs. International Journal of Computer and Communication Engineering, 2(6), 706–710. https://doi.org/10.7763/IJCCE.2013.V2.279

Nassar, M., & Sabbagh, A. (2016). The geometric mosaics at Khirbat Mar Elyas: A comparative study. Greek, Roman, and Byzantine Studies, 56(3), 528–555.

Orey, D. C., & Rosa, M. (2008). Ethnomathematics and cultural representations: Teaching in highly diverse contexts. Journal Acta Scientiae, 10(1), 27–46.

Prusinkiewicz, P., & Lindenmayer, A. (2012). The algorithmic beauty of plants. Springer Science & Business Media.

Romadiastri, Y. (2017). Batik fraktal: Perkembangan aplikasi geometri fraktal [Fractal batik: The development of fractal geometry applications]. Delta: Jurnal Ilmiah Pendidikan Matematika, 1(2), 158–164. https://doi.org/10.31941/delta.v1i2.484

Shomakhmadov, S. H. (2012). The features of the interpretation of mañgala-symbols in buddhist sanskrit manuscripts from central asia. Manuscripta Orientalia. International Journal for Oriental Manuscript Research, 18(2), 9–23.

Sulaiman, H., & Firmasari, S. (2020). Analisis geometri fraktal pada bentuk bangunan di komplek keraton kanoman cirebon [Fractal geometry analysis on building forms in the Kanoman Cirebon palace complex]. Euclid, 7(1), 51–60. https://doi.org/10.33603/e.v7i1.2831

Sulaiman, H., & Nasir, F. (2020). Ethnomathematics: Mathematical aspects of panjalin traditional house and its relation to learning in schools. Al-Jabar: Jurnal Pendidikan Matematika, 11(2), 247–260. https://doi.org/10.24042/ajpm.v11i2.7081

Wen, Z. (2011). Chinese Motifs of Good Fortune. Better Link.

Xu, C., Huang, Y., & Dewancker, B. (2020). Art inheritance: An education course on traditional pattern morphological generation in architecture design based on digital Sculpturism. Sustainability, 12(9), 3752. https://doi.org/10.3390/su12093752

Yi, T. (2004). A Technology–Enhanced Fractal/Chaos Course. Electronic Proceeding of the Seventeenth Annual International Conference on Technology in Colligate Mathematics, 1–6.

Yildiz, A., & Baltaci, S. (2017). Reflections from the lesson study for the development of techno-pedagogical competencies in teaching fractal geometry. European Journal of educational research, 6(1), 41–50. https://doi.org/10.12973/eu-jer.6.1.41

Yuniana, E. R. (2016). Pagoda Tian Ti Studi Deskriptif Mengenai Makna Simbol pada Bangunan Pagoda Tian Ti di Kenpark, Surabaya [A Descriptive Study of the Symbolic Meanings of the Tian Ti Pagoda Building in Kenpark, Surabaya]. [Unpublished Thesis]. Universitas Airlangga.

Published
2023-06-15
How to Cite
Alghar, M. Z., Walidah, N. Z., & Marhayati, M. (2023). Ethnomathematics: The exploration of fractal geometry in Tian Ti Pagoda using the Lindenmayer system. Alifmatika: Jurnal Pendidikan Dan Pembelajaran Matematika, 5(1), 57-69. https://doi.org/10.35316/alifmatika.2023.v5i1.57-69
Abstract viewed = 464 times
FULL TEXT PDF downloaded = 406 times