DETEKSI PENYAKIT CITRUS VEIN PHLOEM DEGENERATION (CVPD) PADA DAUN JERUK MENGGUNAKAN METODE SEGMENTASI K-MEANS DAN ARSITEKTUR EFFICIENNET
DOI:
https://doi.org/10.35316/jimi.v10i2.80-87Keywords:
Citrus vein phloem degeneration (cvpd), Segmentasi, Convolutional Neural Network (CNN),, K-Means, Image ClassificationAbstract
Citrus vein phloem degeneration (CVD) is a devastating disease of citrus plants and seriously impacts crop quality. Although manual detection is feasible, this method faces many challenges, such as the similarity of early symptoms between healthy and infected leaves. Therefore, manual detection is time-consuming and inefficient. Therefore, an accurate and efficient automatic detection method is needed. This study aims to combine two methods: the K-Means segmentation method and the EfficientNet architecture to build an automatic detection model for CVD in citrus leaves. This method aims to improve the classification accuracy of citrus leaf images. This study is divided into two stages: the first stage uses the K-Means algorithm for image segmentation, and the second stage uses the EfficientNet model for classification. The K-Means segmentation method is used to separate the leaf surface from the background, focusing only on the parts of the leaf that show disease symptoms. The segmentation results are then processed in the second stage using the EfficientNet model. The EfficientNet model is known for its efficient feature extraction and excellent performance in recognizing complex visual patterns. The results showed that combining the K-Means segmentation method with the EfficientNet architecture significantly improved the accuracy of CVPD detection compared to a traditional CNN model without segmentation. This system is expected to assist farmers in detecting CVPD and support the implementation of smart agriculture technology in automated plant health monitoring.
Downloads
References
[1] I. Made Asta Gunawan, I. Gusti Ayu Diah Yuniti, P. Lasmi Yuliyanthi Sapanca, B. Penerapan Standar Instrumen Pertanian Bali, and P. Studi Agroteknologi Fakutas Pertanian dan Bisnis Universitas Mahasaraswati Denpasar, “Intesitas Serangan dan Persentase Kerusakan Tanaman Jeruk Terserang CVPD (Citrus Vein Phloem Degeneration) Di Kabupaten Karangasem,” vol. 3, no. 1, pp. 1–6, 2024, [Online]. Available: https://e-journal.unmas.ac.id/index.php/agrofarm
[2] Desy Puspitasari, “Benih Bermutu Tentukan Keberhasilan Kampung Jeruk,” Direktorat Jendral Hortikultura , Dec. 2023.
[3] K. S. Marhaeni and I Putu Parwata, “Deteksi Molekuler Bakteri Liberobacter Asiaticum Penyebab Penyakit Citrus Vein Phloem Degeneration (CVPD) Pada Tanaman Jeruk Siam (Citrus Nobilis),” JST (Jurnal Sains dan Teknologi), vol. 13, no. 1, pp. 110–117, Jun. 2024, doi: 10.23887/jstundiksha.v13i1.79556.
[4] E. Fernando Ade Pratama and J. Jumadi, “Kampus I: Jl Meranti Raya No.32 Sawah Lebar Kota Bengkulu 38228 Telp. (0736) 22027, Fax,” Jurnal Media Infotama, vol. 18, no. 2, p. 341139.
[5] D. Pakiding, A. Selao, and W. Wahyuddin, “Implementasi Computer Vision dalam Mendeteksi Penyakit pada Tanaman Cabai dan Tomat Menggunakan Algoritma Convolutional Neural Networks,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 3, pp. 841–850, Jun. 2025, doi: 10.57152/malcom.v5i3.1989.
[6] M. Shams Afzal Karim, A. Akhsanul Hakim, C. Saskia Rafika, and E. Yulia Puspaningrum, “Seminar Nasional Informatika Bela Negara (SANTIKA) Klasifikasi Motif Batik Yogyakarta dan Pekalongan Menggunakan Metode GLCM dan CNN Berbasis Arsitektur EfficientNet”.
[7] W.R. Perdani, R. Magdalena, and N.K. Caecar Pratiwi, “Deep Learning untuk Klasifikasi Glaukoma dengan menggunakan Arsitektur EfficientNet,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 2, p. 322, Apr. 2022, doi: 10.26760/elkomika.v10i2.322.
[8] D. Dini et al., “Deteksi Dini Terhadap Penyakit Tumor Otak Menggunakan Citra Magnetik Resonance Imaging (MRI) Dengan Pendekatan Deep Convolutional Neural Network,” Nama Jurnal, vol. 10, no. 1, pp. 37–42, 2025, doi: 10.35316/jimi.v10i1.37-41.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Informatika

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

