Deteksi Bahan Makanan untuk Rekomendasi Resep Masakan pada Program Diet Menggunakan Algoritma CNN
DOI:
https://doi.org/10.35316/jimi.v9i2.134-141Keywords:
Convolutional Neural Network, Diet, Klasifikasi, Resep Masakan, VGG16Abstract
The increasing need for efficient dietary planning has led to the development of automated systems for identifying food ingredients and generating suitable diet recommendations. This study focuses on implementing a Convolutional Neural Network (CNN) using the VGG16 architecture to classify food ingredients and determine appropriate diet recipes. The problem addressed is the difficulty of manually identifying various food ingredients, which can be time-consuming and error-prone, especially in large-scale dietary planning. The proposed solution integrates deep learning technology with a user-friendly application that automates the classification process and generates diet suggestions. The method involves utilizing the VGG16 model pre-trained on the ImageNet dataset. The dataset underwent preprocessing techniques, including Gaussian Blur for noise reduction, normalization, and data augmentation, to improve model generalization. The model was trained over 50 epochs, achieving a training accuracy of 96.28% and a validation accuracy of 95%. This study contributes to the development of intelligent dietary systems, providing significant benefits in enhancing user convenience, accuracy in food classification, and promoting healthier lifestyles.
Downloads
References
[1] G. R. Fikri, S. Lina, and M. Sitio, “Android Mengunakan Metode Extreme Programming,” Jurnal Ilmu Komputer dan Pendidikan, vol. 2, no. 2, pp. 517–523, 2024.
[2] E. S. Baihaki, “Gizi Buruk dalam Perspektif Islam: Respon Teologis Terhadap Persoalan Gizi Buruk,” SHAHIH: Journal of Islamicate Multidisciplinary, vol. 2, no. 2, 2017, doi: 10.22515/shahih.v2i2.953.
[3] A. F. Anisa et al., “Permasalahan Gizi Masyarakat dan Upaya Perbaikannya,” Gizi Masyarakat, vol. 40, pp. 1–22, 2017.
[4] Unicef, “Analisis Lanskap Kelebihan Berat Badan dan Obesitas di Indonesia,” Unicef, p. 6, 2023, [Online]. Available: https://www.unicef.org/indonesia/media/16691/file/Ringkasan untuk Pemangku Kebijakan.pdf
[5] D. Vilasari, A. N. Ode, R. Sahilla, N. Febriani, and S. H. Purba, “Peran Promosi Kesehatan Dalam Meningkatkan Kesadaran Masyarakat Terhadap Penyakit Tidak Menular (PTM) : Studi Literatur:,” Jurnal Kolaboratif Sains, vol. 7, no. 7, pp. 2635–2648, 2024, doi: 10.56338/jks.v7i7.5626.
[6] C. Mahaputri, Y. Kristian, and E. Setyati, “Pengenalan Makanan Tradisional Indonesia Beserta Bahan-bahannya dengan Memanfaatkan DCNN Transfer Learning,” Journal of Intelligent System and Computation, vol. 4, no. 2, pp. 61–68, 2022, doi: 10.52985/insyst.v4i2.252.
[7] M. E. Putri, M. Khairi, M. Furqan, and B. Yusman, “Jurnal Kecerdasan Buatan , Komputasi dan Teknologi Informasi Deteksi Objek Untuk Menghitung Perkiraan Kalori Makanan Menggunakan Metode R-CNN Mask Berbasis Web,” vol. 5, no. 1, pp. 84–92, 2024.
[8] I. P. A. E. Darma Udayana and P. G. S. C. Nugraha, “Prediksi Citra Makanan Menggunakan Convolutional Neural Network Untuk Menentukan Besaran Kalori Makanan,” Jurnal Teknologi Informasi dan Komputer, vol. 6, no. 1, pp. 30–38, 2020, doi: 10.36002/jutik.v6i1.1001.
[9] R. Rismiyati and A. Luthfiarta, “VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification,” Telematika, vol. 18, no. 1, p. 37, 2021, doi: 10.31315/telematika.v18i1.4025.
Downloads
Published
Versions
- 19-12-2024 (2)
- 19-12-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Ilmiah Informatika

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

