Deteksi Bahan Makanan untuk Rekomendasi Resep Masakan pada Program Diet Menggunakan Algoritma CNN

Authors

  • Berliani Risqi Dwi Saputri Politeknik Harapan Bersama
  • Fadiyah Desi Asmawati Politeknik Harapan Bersama
  • Asih Rahmawati Politeknik Harapan Bersama
  • Ilham Hatta Manggala Politeknik Harapan Bersama
  • Muhammad Fikri Hidayattullah Politeknik Harapan Bersama

DOI:

https://doi.org/10.35316/jimi.v9i2.134-141

Keywords:

Convolutional Neural Network, Diet, Klasifikasi, Resep Masakan, VGG16

Abstract

The increasing need for efficient dietary planning has led to the development of automated systems for identifying food ingredients and generating suitable diet recommendations. This study focuses on implementing a Convolutional Neural Network (CNN) using the VGG16 architecture to classify food ingredients and determine appropriate diet recipes. The problem addressed is the difficulty of manually identifying various food ingredients, which can be time-consuming and error-prone, especially in large-scale dietary planning. The proposed solution integrates deep learning technology with a user-friendly application that automates the classification process and generates diet suggestions. The method involves utilizing the VGG16 model pre-trained on the ImageNet dataset. The dataset underwent preprocessing techniques, including Gaussian Blur for noise reduction, normalization, and data augmentation, to improve model generalization. The model was trained over 50 epochs, achieving a training accuracy of 96.28% and a validation accuracy of 95%. This study contributes to the development of intelligent dietary systems, providing significant benefits in enhancing user convenience, accuracy in food classification, and promoting healthier lifestyles.

Downloads

Download data is not yet available.

References

[1] G. R. Fikri, S. Lina, and M. Sitio, “Android Mengunakan Metode Extreme Programming,” Jurnal Ilmu Komputer dan Pendidikan, vol. 2, no. 2, pp. 517–523, 2024.

[2] E. S. Baihaki, “Gizi Buruk dalam Perspektif Islam: Respon Teologis Terhadap Persoalan Gizi Buruk,” SHAHIH: Journal of Islamicate Multidisciplinary, vol. 2, no. 2, 2017, doi: 10.22515/shahih.v2i2.953.

[3] A. F. Anisa et al., “Permasalahan Gizi Masyarakat dan Upaya Perbaikannya,” Gizi Masyarakat, vol. 40, pp. 1–22, 2017.

[4] Unicef, “Analisis Lanskap Kelebihan Berat Badan dan Obesitas di Indonesia,” Unicef, p. 6, 2023, [Online]. Available: https://www.unicef.org/indonesia/media/16691/file/Ringkasan untuk Pemangku Kebijakan.pdf

[5] D. Vilasari, A. N. Ode, R. Sahilla, N. Febriani, and S. H. Purba, “Peran Promosi Kesehatan Dalam Meningkatkan Kesadaran Masyarakat Terhadap Penyakit Tidak Menular (PTM) : Studi Literatur:,” Jurnal Kolaboratif Sains, vol. 7, no. 7, pp. 2635–2648, 2024, doi: 10.56338/jks.v7i7.5626.

[6] C. Mahaputri, Y. Kristian, and E. Setyati, “Pengenalan Makanan Tradisional Indonesia Beserta Bahan-bahannya dengan Memanfaatkan DCNN Transfer Learning,” Journal of Intelligent System and Computation, vol. 4, no. 2, pp. 61–68, 2022, doi: 10.52985/insyst.v4i2.252.

[7] M. E. Putri, M. Khairi, M. Furqan, and B. Yusman, “Jurnal Kecerdasan Buatan , Komputasi dan Teknologi Informasi Deteksi Objek Untuk Menghitung Perkiraan Kalori Makanan Menggunakan Metode R-CNN Mask Berbasis Web,” vol. 5, no. 1, pp. 84–92, 2024.

[8] I. P. A. E. Darma Udayana and P. G. S. C. Nugraha, “Prediksi Citra Makanan Menggunakan Convolutional Neural Network Untuk Menentukan Besaran Kalori Makanan,” Jurnal Teknologi Informasi dan Komputer, vol. 6, no. 1, pp. 30–38, 2020, doi: 10.36002/jutik.v6i1.1001.

[9] R. Rismiyati and A. Luthfiarta, “VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification,” Telematika, vol. 18, no. 1, p. 37, 2021, doi: 10.31315/telematika.v18i1.4025.

Published

19-12-2024 — Updated on 19-12-2024

Versions

How to Cite

Saputri, B. R. D., Asmawati, F. D., Rahmawati, A., Manggala, I. H., & Hidayattullah, M. F. (2024). Deteksi Bahan Makanan untuk Rekomendasi Resep Masakan pada Program Diet Menggunakan Algoritma CNN. Jurnal Ilmiah Informatika, 9(2), 134–141. https://doi.org/10.35316/jimi.v9i2.134-141

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.