Analisis Efektivitas Algoritma Machine Learning dalam Deteksi Malware Android Dengan Statistical Tests

Authors

  • Faisal Abdussalam Universitas Siliwangi
  • Alam Rahmatulloh Univeritas Siliwangi

DOI:

https://doi.org/10.35316/jimi.v9i2.124-133

Keywords:

K-Nearest NeighborI, Neural Network, Malware, Machine learning, Decision Tree

Abstract

Because there are so many harmful apps on the market, Android malware detection has emerged as a crucial cybersecurity concern. Using the Drebin dataset, which comprises 5,560 malicious and 9,476 benign applications, this study attempts to assess how well three machine learning algorithms—Neural Network, K-Nearest NeighborI (K-NN), and Decision Tree—detect malware on the Android operating system. The method used involves testing the performance of the three algorithms based on Accuracy, Precision, Recall, and F1-Score. The results show that Neural Network has the highest Accuracy at 98.7%, followed by K-NN with 97.7%, and Decision Tree with 97.5%. Neural Network also excels in Precision, Recall, and F1-Score with values of 98.4%, 98.1%, and 98.2%, respectively. Although the performance differences between the algorithms are not statistically significant, the results indicate that Neural Network offers the best solution for Android malware detection. This study provides guidance in selecting the appropriate algorithm for Android -based security systems.

Downloads

Download data is not yet available.

References

[1] A. Nur Iman, A. Budiyono, And A. Almaarif, “Analisis Malware Pada Sistem Operasi Android Menggunakan Permission-Based Malware Analysis In Android Operation System Using Permission-Based.”

[2] Y. Dwi Et Al., “Analisis Malware Menggunakan Metode Analisis Statis Dan Dinamis Untuk Pembuatan Ioc Berdasarkan Stix Versi 2.1.”

[3] N. Mclaughlin Et Al., “Deep Android Malware Detection,” In Codaspy 2017 - Proceedings Of The 7th Acm Conference On Data And Application Security And Privacy, Association For Computing Machinery, Inc, Mar. 2017, Pp. 301–308. Doi: 10.1145/3029806.3029823.

[4] P. Agrawal And B. Trivedi, “Unstructured Data Collection From Apk Files For Malware Detection,” 2020.

[5] D. Hindarto, R. Eko Indrajit, And E. Dazki, “Perbandingan Kinerja Akurasi Klasifikasi K-Nn, Nb Dan Dt Pada Apk Android,” Vol. 9, No. 1, Pp. 486–503, 2022, [Online]. Available: Http://Jurnal.Mdp.Ac.Id

[6] Ebtesam J. Alqahtani, Rachid Zagrouba, And Abdullah Almuhaideb, 2019 Sixth International Conference On Malicious Defined Systems (Sds) : 10-13 June, 2019, Rome, Italy. Ieee, 2019.

[7] D. T. Ananto Et Al., “Prosiding Seminar Nasional Lppm Umj Website: Http://Jurnal.Umj.Ac.Id/Index.Php/Semnaskat E-Issn: 2714-6286 Edukasi Dan Pelatihan Pengenalan Machine learning Dan Computer Vision Untuk Mengeksplorasi Potensi Visual.” [Online]. Available: Http://Jurnal.Umj.Ac.Id/Index.Php/Semnaskat

[8] A. Ramadhan, L. Lindawati, And M. M. Rose, “Komparasi Algoritma Neural Network Dan K-Nearest Neighbor Dalam Mendeteksi Malware Android,” Building Of Informatics, Technology And Science (Bits), Vol. 5, No. 1, Jun. 2023, Doi: 10.47065/Bits.V5i1.3538.

[9] B. Purnama Et Al., “Jepin (Jurnal Edukasi Dan Penelitian Informatika) Deteksi Malware Ransomware Menggunakan Deep Neural Network,” 2024.

[10] R. Turaina, R. Saputra, U. Metamedia, And J. Khatib Sulaiman Dalam No, “Optimalisasi Deteksi Malware Pada Platform Android Dengan Pendekatan Ensemble Machine learning,” Jurnal Nasional Komputasi Dan Teknologi Informasi (Jnkti), Vol. 7, No. 3, 2024.

[11] N. Nursobah, S. Lailiyah, B. Harpad, And M. Fahmi, “Penerapan Data Mining Untuk Prediksi Perkiraan Hujan Dengan Menggunakan Algoritma K-Nearest Neighbor,” Building Of Informatics, Technology And Science (Bits), Vol. 4, No. 3, Dec. 2022, Doi: 10.47065/Bits.V4i3.2564.

[12] N. Hadianto, H. B. Novitasari, And A. Rahmawati, “Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network,” Jurnal Pilar Nusa Mandiri, Vol. 15, No. 2, Pp. 163–170, Sep. 2019, Doi: 10.33480/Pilar.V15i2.658.

[13] V. Alvian, D. Hidayatullah, A. Nilogiri, H. Azizah, And A. Faruq, “Klasifikasi Siswa Berprestasi Menggunakan Metode K-Nearest Neighbor (Knn) Pada Sma Negeri 2 Situbondo Classification Of Achieving Students Using K-Nearest Neighbor (Knn) Method At Sma Negeri 2 Situbondo,” 2022. [Online]. Available: Http://Jurnal.Unmuhjember.Ac.Id/Index.Php/Jst

[14] P. Putra, A. M. H Pardede, And S. Syahputra, “Analisis Metode K-Nearest Neighbour (Knn) Dalam Klasifikasi Data Iris Bunga,” Jurnal Teknik Informatika Kaputama (Jtik), Vol. 6, No. 1, 2022.

[15] R. N. Ramadhon, A. Ogi, A. P. Agung, R. Putra, S. S. Febrihartina, And U. Firdaus, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Pelanggan Aktif Atau Tidak Aktif Pada Data Bank,” 2024.

Published

14-12-2024 — Updated on 14-12-2024

Versions

How to Cite

Abdussalam, F., & Rahmatulloh, A. (2024). Analisis Efektivitas Algoritma Machine Learning dalam Deteksi Malware Android Dengan Statistical Tests. Jurnal Ilmiah Informatika, 9(2), 124–133. https://doi.org/10.35316/jimi.v9i2.124-133

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.