Klasifikasi Penyakit pada Buah Jeruk Berdasarkan Citra dengan Pendekatan Transfer Learning Menggunakan Arsitektur Densenet-121

Authors

  • Sheli Agustina Universitas Bina Insan
  • Asep Toyib Hidayat Universitas Bina Insan
  • Satrianansyah Universitas Bina Insan
  • Rudi Kurniawan Universitas Bina Insan

DOI:

https://doi.org/10.35316/jimi.v10i1.42-47

Keywords:

Image Classification, Citrus Diseases, Digital Image Processing, Machine Learning, DenseNet-121

Abstract

This study aims to develop a classification system for citrus fruit diseases based on digital images using a machine learning approach. The primary challenge in citrus cultivation is disease attacks that affect both the quality and quantity of production. In this research, image processing techniques were applied to extract color, shape, and texture features from citrus fruit images, which were then used as input for classification algorithms. This study uses the DenseNet-121 architecture for orange fruit image classification. The dataset used consisted of images of healthy citrus fruits and those affected by various diseases, such as blackspot, canker, and greening. The testing results showed that the DenseNet-121 architecture achieved the highest accuracy in classifying citrus diseases, with an accuracy rate of up to 99%. This system is expected to assist farmers and relevant stakeholders in early disease detection and in taking appropriate control measures.

Downloads

Download data is not yet available.

References

[1] R. Soekarta, N. Nurdjan, and A. Syah, “Klasifikasi Penyakit Tanaman Tomat Menggunakan Metode Convolutional Neural Network (CNN),” INSECT, vol. 8, no. 2, pp. 143–151, 2023.

[2] S. Nurmaini, A. Darmawahyun, A. I. Sapit, M. N. Rachmatullah, Firdaus, and B. Tutuko, Pengenalan Deep Learning dan Implementasinya. UPT. Penerbit dan Percetakan Universitas Sriwijaya, 2021.

[3] M. I. Anshori, R. A. Yaqin, M. A. Z. Sidiq, and I. W. P. Agung, “Klasifikasi Jenis Jerawat Secara Otomatis Dengan Convolutional Neural Network Menggunakan Arsitektur Resnet-50,” J. Manaj. Inform., vol. 15, no. 1, pp. 73–84, 2025.

[4] William and C. Lubis, “Klasifikasi Penyakit Mata menggunakan CNN,” J. Ilmu Komput. dan Sist. Inf., vol. 10, no. 1, pp. 1–4, 2022.

[5] J. Pardede and D. A. L. Putra, “Implementasi DenseNet Untuk Mengidentifikasi Kanker Kulit Melanoma,” J. Tek. Inform. dan Sist. Inf. Vol., vol. 6, no. 3, pp. 425–433, 2020.

[6] Arnita, F. Marpaung, F. Aulia, Nita Suryani, and R. C. Nabila, Computer Vision Dan Pengolahan Citra Digital. Surabaya, Jawa Timur: Pustaka Aksara, 2022.

[7] N. Fadhilah and A. Desiani, “Klasifikasi Nyeri Punggung Bawah Menggunakan Algoritma K-Nearest Neighbor Dan Support Vector Machine,” J. Tek. Elektro dan Komputasi Vol., vol. 7, no. 1, pp. 91–98, 2025.

[8] Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” J. SISFOKOM (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 394–399, 2022.

[9] P. L. Romadloni, B. A. Kusuma, W. M. Baihaqi, F. I. Komputer, and U. A. Purwokerto, “Komparasi Metode Pembelajaran Mesin untuk Implementasi Pengambilan Keputusan dalam Menentukan Promosi Jabatan Karyawan,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 622–628, 2022.

Published

29-06-2025

How to Cite

Agustina, S., Hidayat, A. T., Satrianansyah, & Kurniawan, R. (2025). Klasifikasi Penyakit pada Buah Jeruk Berdasarkan Citra dengan Pendekatan Transfer Learning Menggunakan Arsitektur Densenet-121. Jurnal Ilmiah Informatika, 10(1), 42–47. https://doi.org/10.35316/jimi.v10i1.42-47

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.