Deteksi Dini Terhadap Penyakit Tumor Otak Menggunakan Citra Magnetik Resonance Imaging (MRI) dengan Pendekatan Deep Convolutional Neural Network

Authors

  • Muhamad Salman Universitas Bina Insan
  • Rudi Kurniawan Universitas Bina Insan
  • Bunga Intan Universitas Bina Insan
  • Budi Santoso Universitas Bina Insan

DOI:

https://doi.org/10.35316/jimi.v10i1.37-41

Keywords:

Brain Tumor, MRI, DCNN, ResNet52V2

Abstract

This study aims to develop an early detection system for brain tumors using MRI images with a Deep Convolutional Neural Network (DCNN) based on the ResNet152V2 architecture. Rapid detection of brain tumors is crucial for improving recovery chances; however, manual processes often face challenges due to limitations in technology and medical expertise. Therefore, this research offers an automated solution for analyzing MRI images.The methods used include data collection from public datasets, image preprocessing, and training the DCNN model. The ResNet152V2 model was chosen for its ability to address the vanishing gradient problem and its effectiveness in feature extraction. The results show that the model achieved an accuracy of 92.38% in classifying four types of brain tumors: Meningioma, Glioma, Pituitary, and No Tumor. Evaluation using a confusion matrix and classification report indicates good performance. This research is expected to contribute to the early diagnosis of brain tumors and serve as a reference for future studies in the application of artificial intelligence in the medical field.

Downloads

Download data is not yet available.

References

[1] S. Heranurweni, B. Destyningtias, and A. K. Nugroho, “Klasifikasi Pola Image pada Pasien Tumor Otak Berbasis Jaringan Syaraf Tiruan (Studi Kasus Penanganan Kuratif Pasien Tumor Otak),” eLEKTRIKAL, vol. 10, no. 2, pp. 37–40, 2018.

[2] K. P. K. Nasional, “Pedoman Nasional Pelayanan Kedokteran Tumor Otak,” Kementeri. Kesehat. RI, vol. 1, no. 1, pp. 146–153, 2019, [Online]. Available: https://www.kemkes.go.id/article/view/19093000001/penyakit-jantung- %0Apenyebab-kematian-terbanyak-ke-2-di-indonesia.html.

[3] A. W. Astuti, I. M. L. Prasetya, and T. Hariyanto, “Teknik Pemeriksaan Magnetic Resonance Imaging ( MRI ) Brain Dengan Penambahan Sequence Axial 3D-Fiesta Pada Kasus Facial Tic,” Compromise J. Community Proffesional Serv. Journa, vol. 1, no. 4, pp. 18–28, 2023.

[4] N. H. Apriantoro and Christianni, “Analisis Perbedaan Citra MRI Brain Pada SEKUENT1SE dan T1FLAIR,” Sinergi, vol. 19, no. 3, pp. 206–210, 2015.

[5] Y. Fang, J. Zhao, L. Hu, X. Ying, Y. Pan, and X. Wang, “Image classification toward breast cancer using deeply-learned quality,” J. Vis. Commun. Image Represent., vol. 64, p. 102609, 2019, doi: 10.1016/j.jvcir.2019.102609.

[6] M. Harahap, E. M. Laia, L. S. Sitanggang, M. Sinaga, D. F. Sihombing, and A. M. Husein, “Deteksi Penyakit Covid-19 Pada Citra X-Ray Dengan Pendekatan Convolutional Neural Network (CNN),” J. RESTI, vol. 6, no. 1, pp. 70–77, 2022.

[7] D. Setiawan and T. W. E. Suryawijaya, “Algoritma Renet152V2 dalam Melakukan Klasifikasi Penyakit pada Daun Tanaman Tomat,” J. Comput. Sci. Technol., vol. 3, no. 2, pp. 37–42, 2023.

[8] Arnita, F. Marpaung, F. Aulia, Nita Suryani, and R. C. Nabila, Computer Vision Dan Pengolahan Citra Digital. Surabaya, Jawa Timur: Pustaka Aksara, 2022.

[9] Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” J. SISFOKOM (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 394–399, 2022.

Published

28-06-2025

How to Cite

Salman, M., Kurniawan, R., Intan, B., & Santoso, B. (2025). Deteksi Dini Terhadap Penyakit Tumor Otak Menggunakan Citra Magnetik Resonance Imaging (MRI) dengan Pendekatan Deep Convolutional Neural Network. Jurnal Ilmiah Informatika, 10(1), 37–41. https://doi.org/10.35316/jimi.v10i1.37-41