IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOR UNTUK PENENTUAN STATUS KANKER

  • Ach. Zubairi Fakultas Syariah dan Ekonomi Islam, Universitas Ibrahimy
  • Hermanto Hermanto Fakultas Sains dan teknologi, Universitas Ibrahimy
  • Hari Santoso Fakultas Sains dan teknologi, Universitas Ibrahimy
  • Abdus Samad Fakultas Sains dan teknologi, Universitas Ibrahimy
  • Ahmad Homaidi Fakultas Sains dan teknologi, Universitas Ibrahimy

Abstract

Kanker merupakan tantangan kesehatan global utama dengan tingkat kematian yang signifikan. Penentuan status kanker yang akurat penting untuk diagnosis dan strategi pengobatan yang tepat. Penelitian ini mengeksplorasi algoritma K-Nearest Neighbor (KNN) dalam klasifikasi jenis kanker, dengan fokus pada dataset kanker payudara dari UCI Machine Learning Repository. Metodologi yang digunakan mencakup pengumpulan data, seleksi atribut, pemisahan data menjadi training dan testing, serta implementasi KNN. Hasil menunjukkan bahwa KNN dapat mencapai akurasi 87.61% dalam klasifikasi dengan evaluasi menggunakan metrik seperti presisi, recall, dan F1-score. Investigasi lebih lanjut diperlukan untuk mengoptimalkan nilai K, waktu komputasi, dan penanganan dataset besar untuk penerapan yang lebih efektif dalam onkologi.

References

A. Robinson and M. Carter, "ROC and AUC analysis for KNN models," International Journal of Health Informatics, vol. 28, no. 1, pp. 45-59, 2022.

A. S. J. S. Patil et al., "K-Nearest Neighbor Algorithm for Cervical Cancer Classification," International Journal of Advanced Research in Computer Science and Software Engineering, vol. 8, no. 3, pp. 12-18, Mar. 2018.

A. Smith and B. Johnson, "Breast Cancer Classification Using KNN," International Journal of Medical Informatics, vol. 125, pp. 1-10, 2020.

A. Smith et al., "The Role of Staging in Cancer Treatment," Journal of Oncology, vol. 45, no. 3, pp. 123-134, Mar. 2022.

E. Brown, "Dataset Analysis for Cancer Classification," Journal of Biomedical Informatics, vol. 112, pp. 103-115, 2020.

I. H. Witten and E. Frank, "Data Mining: Practical Machine Learning Tools and Techniques," 4th ed. Morgan Kaufmann, 2017.

I. Patel et al., "Error Analysis in KNN Classifications," Journal of Medical Systems, vol. 45, no. 4, pp. 1-12, 2021.

J. Doe and A. Smith, "Data mining techniques for large datasets: A study on dataset splitting," International Journal of Data Mining and Knowledge Management Processes, vol. 10, no. 2, pp. 45-58, Mar. 2021.

J. Thompson, "Visualizing Classifier Performance," Journal of Data Science, vol. 19, no. 2, pp. 345-360, 2022.

K. S. K. M. Mohamad et al., "Breast Cancer Diagnosis Using K-Nearest Neighbor Algorithm," International Journal of Computer Applications, vol. 182, no. 3, pp. 1-6, Jan. 2019.

L. Wang et al., "Hybrid K-Nearest Neighbor Classifier with PCA for Cancer Diagnosis," Journal of Computational Biology, vol. 26, no. 8, pp. 905-913, 2019.

M. A. Rahman and S. K. Islam, "Normalization Techniques in K-Nearest Neighbor Algorithm for Cancer Classification," International Journal of Computer Applications, vol. 175, no. 14, pp. 1-6, Nov. 2017.

R. Gupta and M. Sharma, "Enhancing KNN Classifier Performance in Cancer Diagnosis Using Dimensionality Reduction Techniques," International Journal of Engineering Research and Technology, vol. 7, no. 8, pp. 1-5, Aug. 2018.

S. K. Pal and P. S. P. S. Jain, "A Study of K-Nearest Neighbor Classification Method," International Journal of Computer Applications, vol. 97, no. 9, pp. 1-5, Jul. 2014.

S. Kumar and A. Sharma, "Application of K-Nearest Neighbor Algorithm for Lung Cancer Classification," Journal of Biomedical Science and Engineering, vol. 12, pp. 72-85, 2019.

T. A. Elzahar and F. A. El-Kassas, "Using K-Nearest Neighbor Algorithm for Cancer Diagnosis: A Review," International Journal of Computer Applications, vol. 182, no. 44, pp. 1-6, Dec. 2018.

W. N. Street, et al., "Breast Cancer Wisconsin Dataset," UCI Machine Learning Repository, 2020. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

World Health Organization, "Cancer," WHO, 2021. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/cancer. [Accessed: Oct. 2023].

Published
2024-12-28
How to Cite
Zubairi, A., Hermanto, H., Santoso, H., Samad, A., & Homaidi, A. (2024). IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOR UNTUK PENENTUAN STATUS KANKER. JUSTIFY : Jurnal Sistem Informasi Ibrahimy, 3(2), 117-121. https://doi.org/10.35316/justify.v3i2.6467
Abstract viewed = 28 times
PDF (Bahasa Indonesia) downloaded = 29 times