ANALISIS PERBANDINGAN KINERJA MODEL LONG SHORT-TERM MEMORY DAN RECURRENT NEURAL NETWORK DALAM PREDIKSI CUACA BERBASIS DATA CUACA REAL-TIME

Authors

  • Abdurrahman Universitas Teknologi Yogyakarta
  • Suhirman Suhirman Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.35316/jimi.v10i2.95-104

Keywords:

Deep Learning, Recurrent Neural Network (CNN), Long Short-Term Memory (LSTM), Weather, Rainfall

Abstract

Unpredictable weather changes pose a major challenge in various sectors, including agriculture, transportation, and construction. Inaccurate rainfall predictions, especially on a local scale, often hamper community activities and decision-making that depend on weather conditions. This study aims to compare the performance of two artificial neural network models, namely Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN), in predicting rainfall based on hourly weather data collected in real-time using an ESP32 microcontroller equipped with BME280 and BH1750 sensors. The variables used include air temperature, humidity, rainfall, and light intensity. Both models were trained to predict weather conditions for the next few hours based on observation data that had been processed and normalized numerically. The evaluation was using three main metrics, namely Mean Squared Error (MSE), Mean Absolute Error (MAE), and the coefficient of determination (R²). The results shows that the LSTM model performed better with an MAE of 0.684, MSE of 0.7343, and R² of 0.2421, while the RNN model obtained an MAE of 0.2187, MSE of 0.3422, and R² of 0.8213. These findings prove that LSTM is more stable, efficient, and accurate in capturing the temporal patterns of weather data. This system has the potential to become the basis for developing local weather forecasts based on real-time data that are more adaptive to environmental changes

Downloads

Download data is not yet available.

References

[1] N. A. Putri, D. B. Ramadha, T. D. P. A. Kusuma, and H. Prayitno, “Pengaruh Faktor Cuaca Terhadap Perencanaan Penerbangan Dan Dampaknya Pada Keterlambatan Penerbangan,” J. Penelit., vol. 10, no. 1, pp. 19–27, 2025, doi: https://doi.org/10.46491/jp.v10i1.1873

[2] H. Hajrina, T. Tahir, L. O. Amaluddin, and A. Andrias, “Dampak Perubahan Cuaca Pada Pendapatan Masyarakat Nelayan di Pantai Nelayan,” Penelit. Pendidik. Geogr., vol. 10, no. 3, pp. 298–307, 2025, doi: 10.36709/jppg.v10i3.330

[3] J. Andrew, B. Koes, P. Cantik, A. Makmur, and M. S. Dharsono, “Jurnal Ilmiah Mahasiswa Teknik dan Desain Analisis Risiko Hujan terhadap Penyelesaian Pekerjaan Struktur pada Proyek Konstruksi,” vol. 01, no. 01, 2025, doi: 10.51170/jimtd.v1i1.82.

[4] P. A. G. Watson, “Machine learning applications for weather and climate need greater focus on extremes,” Environ. Res. Lett., vol. 17, no. 11, 2022, doi: 10.1088/1748-9326/ac9d4e.

[5] R. Keisler, “Forecasting Global Weather with Graph Neural Networks,” pp. 1–16, 2022, doi: 10.48550/arXiv.2202.07575.

[6] K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate medium-range global weather forecasting with 3D neural networks,” Nature, vol. 619, no. 7970, pp. 533–538, 2023, doi: 10.1038/s41586-023-06185-3.

[7] J. Liu, L. Wu, T. Zhang, J. Huang, X. Wang, and F. Tian, “STFM: Accurate Spatio-Temporal Fusion Model for Weather Forecasting,” Atmosphere (Basel)., vol. 15, no. 10, pp. 1–17, 2024, doi: 10.3390/atmos15101176.

[8] T. D. Hewson and F. M. Pillosu, “A low-cost post-processing technique improves weather forecasts around the world,” Commun. Earth Environ., vol. 2, no. 1, pp. 1–10, 2021, doi: 10.1038/s43247-021-00185-9.

[9] S. Chae, J. Shin, S. Kwon, S. Lee, S. Kang, and D. Lee, “PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network,” Sci. Rep., vol. 11, no. 1, pp. 1–9, 2021, doi: 10.1038/s41598-021-91253-9.

[10] L. Chen et al., “FuXi: a cascade machine learning forecasting system for 15-day global weather forecast,” npj Clim. Atmos. Sci., vol. 6, no. 1, pp. 1–11, 2023, doi: 10.1038/s41612-023-00512-1.

[11] Y. K. Prayoga, A. Z. Arfianto, D. P. Riananda, Muhammad Khoirul Hasin, Adianto, and Ryan Yudha Adhitya, “Integrasi Sistem ESP32 dengan Pemantauan Cuaca Menggunakan Sensor Meteorologi,” J. Appl. Smart Electr. Netw. Syst., vol. 6, no. 01, pp. 23–31, 2025, doi: 10.52158/jasens.v6i01.1149.

[12] D. A. Segovia-Cardozo, C. Bernal-Basurco, and L. Rodríguez-Sinobas, “Tipping Bucket Rain Gauges in Hydrological Research: Summary on Measurement Uncertainties, Calibration, and Error Reduction Strategies,” Sensors, vol. 23, no. 12, 2023, doi: 10.3390/s23125385.

[13] L. Huang et al., “Combining Random Forest and XGBoost Methods in Detecting Early and Mid-Term Winter Wheat Stripe Rust Using Canopy Level Hyperspectral Measurements,” Agric., vol. 12, no. 1, pp. 1–16, 2022, doi: 10.3390/agriculture12010074.

[14] R. S. Nurhalizah, R. Ardianto, and P. Purwono, “Analisis Supervised dan Unsupervised Learning pada Machine Learning: Systematic Literature Review,” J. Ilmu Komput. dan Inform., vol. 4, no. 1, pp. 61–72, 2024, doi: 10.54082/jiki.168.

[15] A. Syahreza, N. K. Ningrum, and M. A. Syahrazy, “Perbandingan Kinerja Model Prediksi Cuaca: Random Forest, Support Vector Regression, dan XGBoost,” Edumatic J. Pendidik. Inform., vol. 8, no. 2, pp. 526–534, 2024, doi: 10.29408/edumatic.v8i2.27640.

[16] S. Nosouhian, F. Nosouhian, and A. K. Khoshouei, “A review of recurrent neural network architecture for sequence learning: Comparison between LSTM and GRU,” Preprints.org, no. July, pp. 1–7, 2021, doi: 10.20944/preprints202107.0252.v1

[17] N. Zucchet and A. Orvieto, “Recurrent neural networks: vanishing and exploding gradients are not the end of the story,” Adv. Neural Inf. Process. Syst., vol. 37, no. Section 5, 2024, doi: 10.48550/arXiv.2405.21064.

[18] C. B. Vennerød, A. Kjærran, and E. S. Bugge, “Long Short-term Memory RNN,” 2021, doi: 10.48550/arXiv.2105.06756.

[19] J. Oui, “Commodifying a ‘Good’ Weather Data: Commercial Meteorology, Low-cost Stations, and the Global Scientific Infrastructure,” Sci. Technol. Hum. Values, vol. 47, no. 1, pp. 29–52, 2022, doi: 10.1177/0162243921995889.

[20] A. V Tatachar, “Comparative Assessment of Regression Models Based On Model Evaluation Metrics,” Int. Res. J. Eng. Technol., vol. 8, no. 9, pp. 853–860, 2021, [online] avaliable: https://www.irjet.net/archives/V8/i9/IRJET-V8I9127.pdf

Published

21-12-2025

How to Cite

Abdurrahman, & Suhirman, S. (2025). ANALISIS PERBANDINGAN KINERJA MODEL LONG SHORT-TERM MEMORY DAN RECURRENT NEURAL NETWORK DALAM PREDIKSI CUACA BERBASIS DATA CUACA REAL-TIME. Jurnal Ilmiah Informatika, 10(2), 95–104. https://doi.org/10.35316/jimi.v10i2.95-104

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.