OTOMASI IDENTIFIKASI TITIK KEPUTUSAN PADA ERP BERBASIS ATURAN MENGGUNAKAN ANALISIS DOKUMEN SPREADSHEET

Authors

  • Muhammad Mutawakkil Alallah Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Muhammad Ainul Yaqin Universitas Islam Negeri Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.35316/jimi.v10i2.61-72

Keywords:

ERP, spreadsheet, decision point,, rule-based system

Abstract

Enterprise Resource Planning (ERP) dirancang untuk mengintegrasikan berbagai proses bisnis dalam suatu organisasi; namun, spreadsheet masih banyak digunakan untuk pemrosesan data dan pelaporan tambahan karena fleksibilitas serta kemudahan penggunaannya. Spreadsheet sering kali mengandung rumus dan logika kondisional seperti IF, VLOOKUP, dan INDEX-MATCH, yang membentuk titik keputusan tersembunyi (hidden decision points) dalam alur kerja ERP. Ketidakterlihatan titik keputusan ini dapat menyebabkan kesalahan analisis, inkonsistensi data, serta kesulitan dalam proses audit. Penelitian ini bertujuan untuk mengembangkan sistem otomatis berbasis aturan (rule-based automation) yang mampu mengidentifikasi titik keputusan dalam dokumen spreadsheet ERP melalui analisis formula, pemetaan ketergantungan antar-sel, dan deteksi pola logika keputusan. Metode yang diusulkan melibatkan ekstraksi struktur formula, analisis dependensi, serta penerapan aturan heuristik untuk mendeteksi percabangan logika. Hasil penelitian menunjukkan bahwa pendekatan ini efektif dalam mengidentifikasi titik keputusan secara sistematis serta mendukung peningkatan keandalan, transparansi, dan efisiensi audit pada sistem ERP berbasis spreadsheet. Kebaruan penelitian ini terletak pada penerapan metode analitik berbasis aturan untuk mendeteksi titik keputusan dalam spreadsheet ERP  topik yang masih jarang dieksplorasi dalam penelitian sebelumnya.

Downloads

Download data is not yet available.

References

[1] F. Bandara, U. Jayawickrama, M. Subasinghage, F. Olan, H. Alamoudi, and M. Alharthi, “Enhancing ERP Responsiveness Through Big Data Technologies: An Empirical Investigation,” Inf. Syst. Front., vol. 26, no. 1, pp. 251–275, 2024, doi: 10.1007/s10796-023-10374-w.

[2] M. C. Solano and J. C. Cruz, “Integrating Analytics in Enterprise Systems: A Systematic Literature Review of Impacts and Innovations,” Adm. Sci., vol. 14, no. 7, 2024, doi: 10.3390/admsci14070138.

[3] Z. N. Jawad and V. Balázs, “Machine learning-driven optimization of enterprise resource planning (ERP) systems: a comprehensive review,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 13, no. 1, 2024, doi: 10.1186/s43088-023-00460-y.

[4] A. Berti, G. Park, M. Rafiei, and W. M. P. van der Aalst, “A generic approach to extract object-centric event data from databases supporting SAP ERP,” J. Intell. Inf. Syst., vol. 61, no. 3, pp. 835–857, 2023, doi: 10.1007/s10844-023-00799-9.

[5] M. B. Sholeh, R. F. Samodra, and A. P. Widodo, “Benefits and Challenges of ERP Implementation in Higher Education Institutions: A Systematic Literature Review,” J. Sist. Inf. Bisnis, vol. 15, no. 1, pp. 21–33, 2025, doi: 10.14710/vol15iss1pp21-33.

[6] B. Hofer, D. Jannach, P. Koch, K. Schekotihin, and F. Wotawa, “Product metrics for spreadsheets—A systematic review,” J. Syst. Softw., vol. 175, p. 110910, 2021, doi: 10.1016/j.jss.2021.110910.

[7] A. Mukhtar, B. Hofer, D. Jannach, and F. Wotawa, “Explaining software fault predictions to spreadsheet users,” J. Syst. Softw., vol. 201, p. 111676, 2023, doi: 10.1016/j.jss.2023.111676.

[8] I. U. Khan, S. Jeong, and S. H. Sim, “Investigation of Issues in Data Anomaly Detection Using Deep-Learning- and Rule-Based Classifications for Long-Term Vibration Measurements,” Appl. Sci., vol. 14, no. 13, 2024, doi: 10.3390/app14135476.

[9] P. L. Poon, M. F. Lau, Y. T. Yu, and S. F. Tang, “Spreadsheet quality assurance: a literature review,” Front. Comput. Sci., vol. 18, no. 2, 2024, doi: 10.1007/s11704-023-2384-6.

[10] S.-D. Pohrib, A.-S. Goga, and A. Pîsla, “Smart ERP Systems – From Data to Decisions,” Proc. Int. Conf. Bus. Excell., vol. 19, no. 1, pp. 380–401, 2025, doi: 10.2478/picbe-2025-0032.

[11] G. B. Komarina, “Transforming Enterprise Decision-Making Through SAP S / 4HANA Embedded Analytics Capabilities,” vol. 5, no. 2, pp. 93–113, 2024.

[12] M. N. Ashtiani and B. Raahemi, “Intelligent Fraud Detection in Financial Statements Using Machine Learning and Data Mining: A Systematic Literature Review,” IEEE Access, vol. 10, no. June 2021, pp. 72504–72525, 2022, doi: 10.1109/ACCESS.2021.3096799.

[13] H. Björklund, J. Björklund, and W. Martens, “Learning algorithms,” pp. 375–409, 2021, doi: 10.4171/automata-1/11.

[14] D. Leocádio, L. Malheiro, and J. Reis, “Artificial Intelligence in Auditing: A Conceptual Framework for Auditing Practices,” Adm. Sci., vol. 14, no. 10, 2024, doi: 10.3390/admsci14100238.

[15] L. Fernsel, Y. Kalff, and K. Simbeck, “Assessing the Auditability of AI-integrating Systems: A Framework and Learning Analytics Case Study,” vol. 1, pp. 1–28, 2024, [Online]. Available: http://arxiv.org/abs/2411.08906

[16] S. R. Suarez, B. M. Huamani, M. A. Meléndez, and C. Ovalle, “Methodology applied to computer audit with artificial intelligence: a systematic review,” IAES Int. J. Artif. Intell., vol. 13, no. 4, pp. 3727–3738, 2024, doi: 10.11591/ijai.v13.i4.pp3727-3738.

[17] T. Siswanto, S. Sari, and S. Teruri, “Integrasi Artificial Intelligence Pada Aplikasi ERP: Systematic Literature Review,” J. Tek. Inform. Unika ST. Thomas, vol. 9, no. 2, pp. 2657–1501, 2024, [Online]. Available: https://ejournal.ust.ac.id/

[18] E. Hustad and J. Stensholt, “Customizing ERP-systems: A framework to support the decision-making process,” Procedia Comput. Sci., vol. 219, pp. 789–796, 2023, doi: 10.1016/j.procs.2023.01.352.

[19] Y. Mossa, P. Smith, and K. Bland, “Reconceptualizing Enterprise Resource Planning (ERP) Systems from a Software Architecture Perspective Using a Framework Based on ERP System Characteristics,” Procedia Comput. Sci., vol. 256, pp. 174–189, 2025, doi: 10.1016/j.procs.2025.02.110.

[20] M. Z. M. Bin Hammad, J. B. Yahaya, and I. Bin Mohamed, “A model for enterprise resource planning implementation in the Saudi public sector organizations,” Heliyon, vol. 10, no. 2, p. e24531, 2024, doi: 10.1016/j.heliyon.2024.e24531.

[21] A. Abu Madi, R. M. Ayoubi, and M. Alzbaidi, “Spotting the Critical Success Factors of Enterprise Resource Planning Implementation in the Context of Public Higher Education Sector,” Int. J. Public Adm., vol. 47, no. 2, pp. 73–89, 2024, doi: 10.1080/01900692.2022.2085300.

[22] M. A. Mannan, A. K. Shaikh, A. A. Khan, K. Raahemifar, and M. A. Mohamed, “Transforming ERP systems with collaborative AI: Paving the path to strategic growth and sustainability,” Array, vol. 28, no. May, p. 100517, 2025, doi: 10.1016/j.array.2025.100517.

[23] K. Hansen, M. Haddara, and M. Langseth, “Exploring multi-criteria decision-making methods in ERP selection,” Procedia Comput. Sci., vol. 219, pp. 879–888, 2023, doi: 10.1016/j.procs.2023.01.363.

Published

25-11-2025

How to Cite

Alallah, M. M., & Yaqin, M. A. (2025). OTOMASI IDENTIFIKASI TITIK KEPUTUSAN PADA ERP BERBASIS ATURAN MENGGUNAKAN ANALISIS DOKUMEN SPREADSHEET. Jurnal Ilmiah Informatika, 10(2), 61–72. https://doi.org/10.35316/jimi.v10i2.61-72

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.