Perbandingan Metode Klasifikasi Data Mining Untuk Deteksi Keaslian Lowongan Pekerjaan di Medsos

  • Mohammad Malik Fajar Universitas Islam Negeri Maulana Malik Ibrahim
  • Annisa Rizkiana Putri Universitas Islam Negeri Maulana Malik Ibrahim
  • Khadijah Fahmi Hayati Holle Universitas Islam Negeri Maulana Malik Ibrahim

Abstract

The COVID-19 pandemic has resulted in more and more people losing their jobs. Due to layoffs or bankrupt companies. This has resulted in many people looking for job vacancies. Job vacancies are circulating on social media but there are real and fake ones. Irresponsible people create job vacancies on social media with fraudulent purposes or for personal gain. So, a comparison of data mining classification methods was made for the detection of authenticity of job vacancies on social media. The method used is naive bayes, KNN, and decision tree. In order to find out which method has the highest accuracy value and can be used to classify the authenticity of job vacancies, and fraud on social media can be prevented. Based on this research, the method that has the highest accuracy value is the KNN method. The accuracy value is 94.93%, while the Decision Tree model has an accuracy value of 91.57% and the Naive Bayes model has an accuracy of 84.35%. The KNN method is the best method for classifying the authenticity of job vacancies.

Downloads

Download data is not yet available.

References

I. Sutoyo, “Perbandingan 5 Algoritma Data Mining Untuk Klasifikasi Data Peserta Didik,” Simnasiptek 2017, 2017.

D. Prajarini, S. Tinggi, S. Rupa, D. Desain, and V. Indonesia, “Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Kulit,” Informatics Journal, vol. 1, no. 3, 2016.

N. I. Wibowo, T. A. Maulana, H. Muhammad, and N. A. Rakhmawati, “Perbandingan Algoritma Klasifikasi Sentimen Twitter Terhadap Insiden Kebocoran Data Tokopedia,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 6, no. 2, 2021, doi: 10.14421/jiska.2021.6.2.120-129.

R. E. Putri, Suparti, and R. Rahmawati, “Perbandingan Metode Klasifikasi Naãve Bayes Dan K-Nearest Neighbor Pada Analisis Data Status Kerja Di Kabupaten Demak Tahun 2012,” Jurnal Gaussian, vol. 3, no. 4, 2014.

H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,” ILKOM Jurnal Ilmiah, vol. 10, no. 2, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.

G. Fiastantyo, “Perbandingan Kinerja Metode Klasifikasi Data Mining Menggunakan Naive Bayes dan Algoritma C4.5 untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa,” Semantic Journal, 2014.

A. W. Indra Purnama, Ragil Saputra, “Implementasi Data Mining Menggunakan Crisp-Dm Pada Sistem Informasi Eksekutif Dinas Kelautan Dan Perikanan Provinsi Jawa Tengah,” Annual Review of Information Science and Technology, vol. 36, 2017.

Published
2022-06-30
How to Cite
Fajar, M. M., Putri, A. R., & Holle, K. F. H. (2022). Perbandingan Metode Klasifikasi Data Mining Untuk Deteksi Keaslian Lowongan Pekerjaan di Medsos. Jurnal Ilmiah Informatika, 7(1), 41-48. https://doi.org/10.35316/jimi.v7i1.41-48
Abstract viewed = 504 times
PDF downloaded = 823 times