KLASIFIKASI LEVEL KEMATANGAN BUAH TOMAT BERDASARKAN FITUR WARNA MENGGUNAKAN MULTI-SVM

Authors

  • Suastika Yulia Riska Teknik Informatika, STMIK Asia Malang
  • Puji Subekti Teknik Informatika, STMIK Asia Malang

DOI:

https://doi.org/10.35316/jimi.v1i1.442

Keywords:

classification, multi-svm, knn, tomato, adaptive histogram equalization

Abstract

Grouping of tomato maturity level is one way to pay attention to the quality of the tomatoes. The traditional way takes a long time and low accuracy, since the determination of the level of subjectively assessed. In addition, the importance of the classification of the level of maturity of tomatoes due to a period of tomato maturation process is relatively quick, so it can reduce the risk of rotting tomatoes. The dataset used in this study was 108 tomato image taken using three types of smartphones. The dataset is divided into 66 training data and testing the data 42. Improvements to the image preprocessing stage is done with adaptive histogram equalization and compared with the histogram equalization. In the feature extraction using color features of the R, G, and A *. The classification of the level of maturity of tomato is done by comparing the accuracy of using multi-SVM and KNN. In the Multi-SVM method using the highest percentage of kernel functions RBG is equal to 77.84%. While the method kNN highest percentage was 77.79% using a value of k = 3.

Downloads

Download data is not yet available.

References

Ahmad, Usman. (2005). Pengolahan Citra Digital dan Teknik Pemrogramannya. Yogyakarta: Graha Ilmu.

Cai,Y., dan Zhang, L. (2012). “Average Color Vector Algorithm in Color recognation Based on A RGB Space”IEEE, hal. 1043-1047.

Dadwal, Meenu. Banga, V.K. (2012). “Estimate Ripeness Level of Fruits Using RGB Color Space and Fuzzy Logic Technique”.International Journal of Engineering and Advanced Technology, Vol 2 Issue 1, ISSN: 2249-8958, hal 225-229.

Halim, Arwin. Hardy. Dewi, Christina. Angkasa, Sulaiman. 2013. “Aplikasi Image Retrieval Menggunakan Kombinasi Metode Color Moment dan Gabor Texture”. Vol 14 No.2 ISSN. 1412-0100.

Harllee Packing Inc. “Product: Premium product are a Harllee tradition’’. 28 November. http://www.harlleepacking.com/products/

Hsu, Chih-Wei dan Lin, Chih-Jen. 2002. "A Comparison of Methods for Multiclass Support Vector Machines". IEEE Trans. Neural Netw, pp. 415-425.

Krisandi, Nobertus. Helmi. Prihantono, Bayu. 2013. “Algoritma k-Nearest Neighbor dalam Klasifikasi Data Hasil Produksi Kelapa Sawit Pada PT. Minamas Kecamatan Parindu”. Bimaster. Vol. 02 No.1, hal 33-38.

Lingras, Pawan dan Butz, Cory. 2007. "Rough Set Based 1-v-1 and 1-v-r Approaches to Support Vector Machine Multi-Classification".Elsevier International Journal on Information Science, vol. 177 pp. 3782-3798.

Sembiring, Krisantus. 2007. “Tutorial SVM –Penerapan Teknik Support Vector Machine untuk Pendeteksian Intrusi pada Jaringan”. ITB

Syahrir, W.Md, Suryani, A., dan Connsynn. (2009), “Color Grading in Tomato Maturity Estimator using Image Processing Teqnique”.IEEE, hal. 276-280.

Vibhute, Anup, dan Bodhe, S.K. (2013). “Outdoor Illumination Estimation of Color Images”. IEEE, Communication and Signal Processing hal 331-334.

Wang, Qi., Wang, Hui., Xie, Lijuan., dan Zhang, Qin. (2012). “Outdoor Color Rating of Sweet Cherries using Computer Vision”. Science Direct, Computer and Electronics in Agriculture hal 113-120.

Published

18-06-2016

How to Cite

Riska, S. Y., & Subekti, P. (2016). KLASIFIKASI LEVEL KEMATANGAN BUAH TOMAT BERDASARKAN FITUR WARNA MENGGUNAKAN MULTI-SVM. Jurnal Ilmiah Informatika, 1(1), 39–45. https://doi.org/10.35316/jimi.v1i1.442

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.