KLASIFIKASI KESEGARAN IKAN TONGKOL BERDASARKAN CITRA MATA BERBASIS CONVOLUTIONAL NEURAL NETWORK (CNN)

Authors

  • Fitria Ningsih Universitas Teknologi Yogyakarta
  • Agus Suhendar Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.35316/jimi.v10i2.88-94

Keywords:

Convolutional Neural Network, Image Classification, Machine Learning, Fish species diversity, Fish Eye Image

Abstract

It Fish freshness is a crucial factor in ensuring food quality and safety. However, the conventional assessment process still relies on human observation, which is subjective supporting system, the risk of distributing non-fresh fish to consumers remains high, potentially affecting public health and consumer trust in fishery products. To address this issue, a fish freshness classification system based on eye image analysis using the Convolutional Neural Network (CNN) method was developed. The system development stages include collecting fihs eye image data, labeling, image preprocessing, CNN model training, and implementing the system in an convolution and pooling layers to extract visual features from the images. The initial testing results show that the system can classify fish freshness into two categories, Fresh and Not Fresh, with a high level of accuracy. This system is expected ti assist the public and fishery industry practitioners in evaluating fish quality more accurately ang efficiencly.

Downloads

Download data is not yet available.

References

[1] A. Malirmasele, “Klasifikasi Kesegaran Ikan Pada Citra Mata Menggunakan VGG-16 Berbasis Web,” MARAS J. Penelit. Multidisplin, vol. 2, no. 3, pp. 1337–1344, 2024, [Online]. Available: https://ejournal.lumbungpare.org/index.php/maras

[2] A. M. Putri, “Semi Quantitative Risk Assessment Evaluation of Histamine on Pindang Cakalang Product in Jakarta,” Clarias J. Perikan. Air Tawar, vol. 4, no. 1, pp. 25–32, 2023, doi: 10.56869/clarias.v4i1.478.

[3] C. dotulong Masinambou et al., “Pengujian Kandungan Histamin dan Mutu Organoleptik Bahan Baku Ikan Tuna Thunnus Albacares Kaleng,” Media Teknol. Has. Perikan., vol. 10, no. 3, pp. 143–149, 2022,

[4] Zaenul Arif and Muhammad Lutfi, “Identifikasi Kesegaran Ikan Berdasarkan Citra Insang dengan Metode Convolution Neural Network,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 11, no. 3, pp. 1352–1360, 2022, doi: 10.35957/jatisi.v8i3.939.

[5] C. Cakra, S. Syarif, H. Gani, and A. Patombongi, “Analisis Kesegaran Ikan Mujair Dan Ikan Nila Dengan Metode Convolutional Neural Network,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 7, no. 2, pp. 74–79, 2022, doi: 10.51876/simtek.v7i2.138.

[6] H. Honainah, F. F. Romadhoni, and A. Ato’illah, “Klasifikasi Kesegaran Ikan Tongkol Berdasarkan Warna Mata Menggunakan Metode Backpropagation,” J. Penelit. Inov., vol. 2, no. 2, pp. 405–414, 2022, doi: 10.54082/jupin.90.

[7] W.- Styorini, A.- Pratiwi, and C.- Widiasari, “Identifikasi Tingkat Kesegaran Ikan Berbasis Android,” J. Amplif. J. Ilm. Bid. Tek. Elektro Dan Komput., vol. 12, no. 1, pp. 12–18, 2022, doi: 10.33369/jamplifier.v12i1.19174.

[8] M. N. Takbir, S. M. Umar, and R. O. Lewa, “Sistem Identifikasi Kesegaran Ikan Berbasis Android Menggunakan Convolutional Neural Network ( CNN ),” vol. 7, 2024.

Published

21-12-2025

How to Cite

Ningsih, F., & Suhendar, A. (2025). KLASIFIKASI KESEGARAN IKAN TONGKOL BERDASARKAN CITRA MATA BERBASIS CONVOLUTIONAL NEURAL NETWORK (CNN). Jurnal Ilmiah Informatika, 10(2), 88–94. https://doi.org/10.35316/jimi.v10i2.88-94

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.