Analisis Korelasi Parameter Kualitas Perairan Kolong Pascatambang Timah dengan Umur Berbeda

  • Andri Kurniawan Universitas Bangka Belitung
  • Eva Prasetiyono
  • Denny Syaputra
Keywords: kualitas air, kolong pascatambang timah, spesies ikan, akuakultur

Abstract

Penelitian ini bertujuan untuk menganalisis kualitas dan korelasi antara sejumlah parameter kualitas perairan di kolong pascatambang timah dengan umur berbeda untuk pengembangan akuakultur. Pengukuran kualitas air dilakukan pada kolong berumur < 1 tahun, umur 20-25 tahun, dan umur > 50 tahun. Hasil penelitian menunjukkan bahwa kolong berumur < 1 tahun bersifat asam (pH 3,71) dengan Eh 0.16 V, DO 5.20 ppm, COD 10.173 ppm, TSS 3.667 ppm, konduktivitas143.75 Us.cm-1, total nitrogen 0.069 ppm, dan total fosfat 0.019 ppm. Karaktersitik perairan kolong berumur > 20 tahun mengalami perbaikan kualitas, khususnya pH dan DO. Hasil pengukuran menunjukkan pH 6.98-7.09, DO 7.07-7.20 ppm, COD 13.900-15.400 ppm, TDS 38.93-81.63 ppm, TSS 6.00 ppm, Eh 0.01-0.02 V, konduktivitas 58.40-122.45 Us.cm-1, total nitrogen 0.021-0.041 ppm, dan total fosfat 0.013-0.021 ppm. Kualitas perairan di kolong pascatambang timah, khususnya di kolong berumur < 1 tahun cenderung berkualitas rendah, meskipun demikian sejumlah ikan ditemukan mampu hidup di kolong tersebut seperti ikan gabus (Channa sp.), sepat rawa (‎Trichogaster sp.), kemuring (Puntius sp.), nila (Oreochromis sp.), tempala (Betta sp.), merak atau cere (Gambusia sp.), seluang (Rasbora sp.), betok (Anabas sp.), selinca (Belontia sp.), berenet atau eyespot rasbora (Brevibora sp.), mata tiga (ikan padi atau javanese ricefish) (Oryzias sp.), dan kepala timah (Aplocheilus sp.). Hal ini menunjukkan bahwa beberapa spesies ikan memiliki kemampuan bertahan hidup dan adaptasi yang baik di lingkungan berkualitas rendah. Sementara itu, ikan-ikan tersebut juga ditemukan di sejumlah kolong yang berumur > 20 tahun. Hal ini menunjukkan bahwa spesies-spesies tersebut memiliki rentang kualitas perairan yang luas untuk kehidupannya serta berpotensi untuk dikembangkan sebagai komoditas akuakultur ataupun organisme suksesor di perairan kolong pascatambang timah.

Downloads

Download data is not yet available.

References

Abdel-Raouf, N., Al-Homaidan, A.A., and Ibraheem, I.B.M. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences 19(3): 257-275

Ahmad, F. 2013. Distribusi dan prediksi tingkat pencemaran logam berat (Pb, Cd, Cu, Zn, dan Ni) dalam sedimen di perairan Pulau Bangka menggunakan indeks beban pencemaran dan indeks geoakumulasi. Jurnal Ilmu dan Teknologi Kelautan Tropis 5(1): 170-181

Al-Mutaz, I.S., and Al-Ghunaimi, M.A. 2001. pH control in water treatment plant by the addition of carbon dioxide. Presented at The Ida World Congress on Desalination and Water Reuse, Bahrain, October 26-31, 2001

Andersen, C.B. 2002. Understanding carbonate equilibria by measuring alkalinity in experimental and natural systems. Journal of Geoscience Education 50(4): 389-403

Ashraf, M.A., Maah, M.J., and Yusoff, I. 2010. Study of water quality and heavy metals in soil & water of ex-mining area Bestari Jaya, Peninsular Malaysia. International Journal of Basic & Applied Sciences IJBAS-IJENS 10(3): 7-12

Ashraf, M.A., Maah, M.J., and Yusoff, I. 2011. Analysis of physio-chemical parameters and distribution of heavy metals in soil and water of ex-mining area of Bestari Jaya, Peninsular Malaysia. Asian Journal of Chemistry 238: 3493-3499

Ashraf, M.A., Maah, M.J., and Yusoff, I. 2012. Morphology, geology and water quality assessment of former tin mining catchment. The Scientific World Journal 2012: 1-15

Bruni, J., Canepa, M., Chiodini, G., Cioni, R., Cipolli, F., Longinelli, A., Marini, L., Ottonello, G., and Zuccolini, M.V. 2002. Irreversible water–rock mass transfer accompanying the generation of the neutral, Mg–HCO3 and high-pH, Ca–OH spring waters of the Genova province, Italy. Applied Geochemistry 17(4): 455-474

Butler, B.A., and Ford, R.G. 2018. Evaluating relationships between total dissolved solids (TDS) and total suspended solids (TSS) in a mining-influenced watershed. Mine Water and the Environment 37(1): 18-30

Celebi, E.E., and Oncel, M.S. 2016. Determination of acid forming potential of massive sulfide minerals and the tailings situated in lead/zinc mining district of Balya (NW Turkey). Journal of African Earth Sciences 2016(124): 487-496

Claassens, S., Van Rensburg, P.J.J., Maboeta, M.S., and Van Rensburg, L. 2008. Soil microbial community function and structure in a post-mining chronosequence. Water, Air, & Soil Pollution 194(1-4): 315-329

De Saedeleer, V., Cappuyns, V., De Cooman, W., and Swennen, R. 2010. Influence of major elements on heavy metal composition of river sediments. Geologica Belgica 13(3): 257-268

Dinis, M.D.L., and Fiuza, A. 2011. Exposure assessment to heavy metals in the environment: measures to eliminate or reduce the exposure to critical receptors. Simeonov LI et al. (Ed.). Environmental Heavy Metal Pollution and Effects on Child Mental Development: Risk Assessment and Prevention Strategies

Dopson, M., and Johnson, D.B. 2012. Biodiversity, metabolism and applications of acidophilic sulfur‐metabolizing microorganisms. Environmental Microbiology 14(10): 2620-2631

Fan, Y., Lu, Z., Chen, J., Zhou, Z., and Wu G. 2002. Major ecological and environmental problems and the ecological reconstruction technologies of the coal mining areas in China. Acta Ecologica Sinica 23(10): 2144-2152

Fernandes, L., Nayak, G.N., Ilangovan, D., and Borole, D.V. 2011. Accumulation of sediment, organic matter and trace metals with space and time, in a creek along Mumbai Coast, India. Estuarine, Coastal and Shelf Science 91(3): 388-99

Fierer, N., Nemergut, D., Knight, R., and Craine, J.M. 2010. Changes through time: integrating microorganisms into the study of succession. Research in Microbiology 161(8): 635-642

Gaikwad, R.W., and Gupta, D.V. 2008. Review on removal of heavy metals from acid mine drainage. Applied Ecology and Environmental Research 6(3): 81-98

Giri, K., Mishra, G., Pandey, S., Verma, P.K., Kumar, R., and Bisht, N.S. 2014. Ecological degradation in Northeastern coal fields: Margherita Assam. International Journal of Science, Environment and Technology 3(3): 881-884

Gonzalez-Toril, E., Gomez, F., Malki, M., and Amils, R. 2006. The Isolation and study of acidophilic microorganisms. In Methods in Microbiology Vol. 35: 471-510. Academic Press

Guan, Y., Shao, C., and Ju, M. 2014. Heavy metal contamination assessment and partition for industrial and mining gathering areas. International Journal of Environmental Research and Public Health 11(7): 7286-7303

Hatar, H., Rahim, S.A., Razi, W.M., and Sahrani, F.K. 2013. Heavy metals content in acid mine drainage at abandoned and active mining area. In AIP Conference Proceedings Vol. 1571, No. 1: 641-646. AIP

Heidel C, Tichomirowa M. 2011. Galena oxidation investigations on oxygen and sulphur isotopes. Isotopes in Environmental and Health Studies 47(2): 169-188. DOI:10.1080/10256016.2011.577893

Heidel, C., and Tichomirowa, M. 2011. Galena oxidation investigations on oxygen and sulphur isotopes. Isotopes in Environmental and Health Studies 47(2): 169-188

Hou, D., He, J., Lu, C., Sun, Y., Zhang, F., and Otgonbayar, K. 2013. Effects of environmental factors on nutrients release at sediment-water interface and assessment of trophic status for a typical Shallow Lake, Northwest China. The Scientific World Journal 2013(2013): 1-16

Huang, J.Z., Ge, X., and Wang, D. 2012. Distribution of heavy metals in the water column, suspended particulate matters and the sediment under hydrodynamic conditions using an annular flume. Journal Environmental Science 24(12): 2051-2019

Kurniawan, A. 2016. Microorganism communities response of ecological changes in post tin mining ponds. Journal of Microbiology and Virology 6(1): 17-26

Kurniawan, A. 2019. Diversitas metagenom bakteri di danau pascatambang timah dengan umur berbeda. [Disertasi]. Biologi, Universitas Jenderal Soedirman

Kurniawan, A., and Mustikasari, D. 2019. Review: Mekanisme Akumulasi Logam Berat di Ekosistem Pascatambang Timah. Jurnal Ilmu Lingkungan 17(3), 408-415

Kurniawan, A., Oedjijono., Tamad., and Sulaeman, U. 2019. The pattern of heavy metals distribution in time chronosequence of ex-tin mining ponds in Bangka Regency, Indonesia. Indonesian Journal of Chemistry 19(1):254-261

Lad, R.J., and Samant, J.S. 2015. Impact of bauxite mining on soil: a case study of bauxite mines at Udgiri, Dist-Kolhapur, Maharashtra State, India. International Research Journal of Environment Sciences 4(2): 77-83

Mejia, E.R., Ospina, J.D., Marquez, M.A., and Morales, A.L. 2009. Oxidation of chalcopyrite (CuFeS2) by Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans like bacterium in shake flasks. In Advanced Materials Research 2009(71-73): 385-388. Trans Tech Publications. Switzerland

Naudet, V., Revil, A., Rizzo, E., Bottero, J.Y., and Begassat, P. 2004. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrology and Earth System Sciences 8(1): 8-22

Rukshana, F., Butterly, C.R., Baldock, J.A., and Tang, C. 2011. Model organic compounds differ in their effects on pH changes of two soils differing in initial pH. Biology and Fertility of Soils 47(1): 51-62

Sadeghi, S.H.R., Harchegani, M., and Younesi, H.A. Suspended sediment concentration and particle size distribution, and their relationship with heavy metal content. Journal of Earth System Science 121(1): 63-71

Sanderman J. 2012. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agriculture, Ecosystems and Environment 2012(155): 70-77

Sen, B., Alp, M.T., Sonmez, F., Kocer, M.A.T., and Canpolat, O. 2013. Relationship of algae to water pollution and waste water treatment. Water Treatment. Ed: Elshorbagy W, Chowdhury RK. Intech. ISBN: 978-953-51-0928-0

Strom, D., Simpson, S.L., Batley, G.E., and Jolley, D.F. 2011. The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Environmental Toxicology and Chemistry 30(7): 1599-1610

Tscherko, D., Hammesfahr, U., Zeltner, G., Kandeler, E., and Bocker, R. 2005. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic and Applied Ecology 6(4): 367-383

Urbanova, M., Kopecky, J., Valaskova, V., Sagova-Mareckova, M., Elhottova, D., Kyselkova, M., Moenne-Loccoz, Y., and Baldrian, P. 2011. Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiology Ecology 78(1): 59-69

Vyas, A., and Pancholi, A. 2009. Environmental degradation due to mining in South Rajasthan: a case study of Nimbahera, Chittorgarh (India). Journal of Environmental Research and Development 4(2): 405-412

Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L., and Hu, L. 2014. Effects of sediment geochemical properties on heavy metal bioavailability. Environment International 2014(73): 270-281

Zhao, H., Li, X., Wang, X., and Tian, D. 2010. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. Journal of Hazardous Materials 183(1-3): 203-210

Published
2020-10-22
How to Cite
Andri Kurniawan, Eva Prasetiyono, & Denny Syaputra. (2020). Analisis Korelasi Parameter Kualitas Perairan Kolong Pascatambang Timah dengan Umur Berbeda. Samakia : Jurnal Ilmu Perikanan, 11(2), 91-100. https://doi.org/10.35316/jsapi.v11i2.824
Abstract viewed = 689 times
PDF downloaded = 0 times