IMPLEMENTASI MODEL CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK DETEKSI KESEGARAN BUAH PISANG BERDASARKAN CITRA KULIT
DOI:
https://doi.org/10.35316/jimi.v10i2.73-79Keywords:
Freshness Classification, Banana, Image Processing, Convolutional Neural Network, Web-Based SystemAbstract
The assessment of banana freshness is currently still done manually through visual observation, touch, and smell. This method is subjective and prone to errors in perception between individuals, which can cause losses for farmers, traders, and costumers. Inaccuracies in assessing freshness levels can result in the distribution of substandard fruit, reduced market competitiveness, and waste of resources. To address these issues, this study designed and implemented a banana freshness classification system using a Convolutional Neural Network (CNN) algorithm. The system was develoved in the form of a Python and Flask-based website. Equipped with a Text-to-Speech (TTS) feature to improve accessibility for users with visual impairments. The research stages included problem identification, banana image data collection, image preprocessing (resize, normalization, augmentation), CNN architecture design, model training, implementation, and testing. The dataset consist of 1,664 images classified into two categories: fresh and not fresh. The implementation result show that the system can classify banana freshness in real-time through visual and audio displays. This system has the potentional to improve the efficiency and objectivity of classification, as well as support the digitization of the agricultural sector.
Downloads
References
[1] F. M. G. Zulcarnain, “Daya Saing Komparatif dan Kompetitif Ekspor Komoditas Buah Pisang Indonesia (Hs Code 0803) di Pasar Malaysia dan Singapura Periode 2019-2023.,” Blantika Multidiscip. J., vol. 2, no. 10, pp. 262–281, 2024, doi: 10.57096/blantika.v2i10.223.
[2] K. R. Pratama, “Manfaat pisang (Musa paradisiaca) dalam upaya menurunkan kadar kolesterol darah.,” Pedago Biol. J. Pendidik. dan Pembelajaran Biol., vol. 11, no. 2, pp. 87–90, 2023, doi: 10.30651/pbjppb.v11i2.19260.
[3] D. C. Agustin, M. A. Rosid, and N. Ariyanti, “Implementasi Convolutional Neural Network Untuk Deteksi Kesegaran Pada Apel.,” J. FASILKOM, vol. 13, no. 2, pp. 145–150, 2023, doi: 10.37859/jf.v13i02.5175.
[4] M. A. Syaharani, T. A. C. Budianto, and R. I. Adam, “Klasifikasi buah segar dan busuk menggunakan algoritma convolutional neural network (CNN).,” 2024. doi: 10.36040/jati.v8i5.11132.
[5] R. Namruddin, M. Mirfan, and I. Irfandi, “Klasifikasi Kesegaran Buah Apel Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Android.,” 2023.
[6] F. Paraijun, R. N. Aziza, and D. Kuswardani, “Implementasi Algoritma Convolutional Neural Network Dalam Mengklasifikasi Kesegaran Buah Berdasarkan Citra Buah,” Kilat, vol. 11, no. 1, pp. 2089–1245, 2022, doi: 10.33322/kilat.v10i2.1458.
[7] M. A. Nurdin, R. C. Wihandika, and F. Utaminingrum, "Deteksi Pergerakan Arah Mata menggunakan Convolution Neural Network berdasarkan Facial Landmark," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 10, pp. 3338–3345, 2020.
[8] S. D. P. Bahari and U. Latifa, “Klasifikasi Buah Segar Menggunakan Teknik Computer Vision Untuk Pendeteksian Kualitas Dan Kesegaran Buah.,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1567–1573, 2023, doi: 10.36040/jati.v7i3.6871.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Informatika

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

