EKSTRAKSI FITUR BERBASIS AVERAGE FACE UNTUK PENGENALAN EKSPRESI WAJAH

Authors

  • Jarot Dwi Prasetyo Manajemen Informatika, AMIK Ibrahimy Situbondo
  • Zaehol Fatah Manajemen Informatika, AMIK Ibrahimy Situbondo
  • Taufik Saleh Manajemen Informatika, AMIK Ibrahimy Situbondo

DOI:

https://doi.org/10.35316/jimi.v2i2.464

Keywords:

wavelet, svm, facial expression recognition, human computer interaction

Abstract

In recent years it appears interest in the interaction between humans and computers. Facial expressions play a fundamental role in social interaction with other humans. In two human communications is only 7% of communication due to language linguistic message, 38% due to paralanguage, while 55% through facial expressions. Therefore, to facilitate human machine interface more friendly on multimedia products, the facial expression recognition on interface very helpful in interacting comfort.

One of the steps that affect the facial expression recognition is the accuracy in facial feature extraction. Several approaches to facial expression recognition in its extraction does not consider the dimensions of the data as input features of machine learning

Through this research proposes a wavelet algorithm used to reduce the dimension of data features. Data features are then classified using SVM-multiclass machine learning to determine the difference of six facial expressions are anger, hatred, fear of happy, sad, and surprised Jaffe found in the database. Generating classification obtained 81.42% of the 208 sample data.

Downloads

Download data is not yet available.

References

W. Burleson A. Kapoor and R.M. Picard. 2007.“A Utomatic Prediction of Frustration”. Int’l J. Human-Computer Studies, 65:724–736.

T. Yan C. JixuAndL Qiang. 2010. “A Unified Probabilistic Framework For Spontaneous Facial Action Modeling And Under Standing”. IEEE Trans. Pattern Analysis and Machine Intelligence, 32(2):258-273.

P. Ekman. 1990.“An Argument For Basic Emotions”. Cognition and Emotion, 6(3):315–331.

P. Ekman AndW. V. Friesen. 1978. “Facial Action Coding System: Investigator’s Guide”. Palo Alto, CA: Consulting Psychologists Press.

F. Dornaika and F. Davoine. 2008. “Simultaneous Facial Action Tracking And Expression Recognition In The Presence Of Head Motion”. Int’l J. Computer Vision, 76:257–281.

F. Tsalakanidou and S. Malassiotis. 2010. “Real Time 2D+3D Facial Action And Expression Recognition”. Pattern Recognition, 43:1763–1775.

G. Zhao and M. Pietikainen. 2009. “Boosted Multi -Resolution Spatio Temporal Descriptors For Facial Expression Recognition”. Pattern Recognition letters, 30:1117–1127.

Z. ZN M. P Antic G.I. Roisman and T.S. Huang. 2009. “A Survey Of Affect Recognition Methods: A Udio, Visual, And Spontaneous Expressions”. IEEE Trans. Pattern Analysis and Machine Intelligence, 3L(1):39 – 58.

H. Kobayashi and F. Hara. 1997. “Facial Interaction Between Animated 3D Face Robot And Human Beings”. SMC ‘97, p. 3732 – 3737.

S.A. Ali Hamdi, V. Roberto and G. Theo. 2010. “Eyes Do Not Lie : S Pontaneous Versus Posed Smiles”. Proc. Int’I Conf. Multimedia.

A. GargL.S. Chen I. Cohen, N. Sebe and T.S. Huang. 2009. “Facial Expression Recognition From Video Sequence : T Emporal And Static Modeling”. Computer Vision and Image Understanding, 91:160–187.

I.A. Essaand A.P. Pentland. 1997. “Coding Analysis Interpretation And Recognition Of Facial Expressions”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):757 – 763.

L. Peng and S.J.D. Pritrce. 2009.“Toint And Implicit Registration For Face Recognition”. Proc. IEEE Conf. Computer Vision and Pattern Recognition, p. 1510–1517.

B. BullotM. YeasinAndR. Sharma. 2006. “Recognition Of Facial Expressions And Measurement Of Levels Of Interest From Video”. IEEE Trans. Multimedia, 8(3):500–508.

T. Mehrabian. 1968. “Communication Without Words”. Psychology Today.Volume 2.

A.Garg M. Lew N. Sebe, I. Cohen and T. Huang. 2002.“Emotion Recognition Using A Cauchy Naive Bayes Classifier”. ICPR2002, 4:3732 – 3737.

P.S. A Leksic and A.K. Katsaggelos.2006. “A Utomatic Facial Expression Recognition Using Facial Animation Parameters And MultistreamHmms”. IEEE Trans. Information Forensics and Security, 1(1):3–11.

M. PanticT. Huang, A. Nijholt and A. Pentland. 2007. “Human Computing And Machine Understanding Of Human Behavior : A Survey”. Artificial Intelligence for Human Computing, 4451:47–71.

T.H. Wang and J.F.I. Lien. 2009.“Facial Expression Recognition System Based On Rigid And Non - Rigid Motion Separation And 3D Pose Estimation”. J. Pattern Recognition, 42(5):917–962.

X. Weimin. 2006. “Facial Expression Recognition Based On Gabor Filter AndSVM”. Chinese Journal of Electronics, 15(4A).

Y. Cheon and D. Kim. 2009. “Natural Facial Expression Recognition Using Differential Aam And Manifold Learning”. Pattern Recognition, 42:1340–1350.

Y. Yacoob and L.S. Davis. 1996. “Recognizing Human Facial Expressions From Long Image Sequences Using Optical Flow”. IEEE Trans. Patt. Anal. Machine Intell., 18(6):636 – 642.

Published

09-12-2017

How to Cite

Prasetyo, J. D., Fatah, Z., & Saleh, T. (2017). EKSTRAKSI FITUR BERBASIS AVERAGE FACE UNTUK PENGENALAN EKSPRESI WAJAH. Jurnal Ilmiah Informatika, 2(2), 130–134. https://doi.org/10.35316/jimi.v2i2.464

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.