The Automating Aquaponics System With RTC, Turbidity Sensor and Water Level Sensor

  • Rizki Devi Anggita Universitas Teknokrat Indonesia, Bandar Lampung, 35123
  • Stywati Universitas Teknokrat Indonesia, Bandar Lampung, 35123
  • Dicky Suman Jaya Universitas Teknokrat Indonesia, Bandar Lampung, 35123
  • Khusnul Edistira Universitas Teknokrat Indonesia, Bandar Lampung, 35123
Keywords: Aquaponics;, IoT, Fishing, Plant, Sensor

Abstract

Aquaponic system automation is key to increasing agricultural efficiency and productivity. A system that is considered an innovative method of sustainable food production that combines fish farming and agriculture simultaneously. The aim of this research is to implement an IoT system in aquaponics that is connected to various sensors, such as turbidity sensors, water level sensors, and RTC modules. To monitor water quality conditions in tilapia habitats and measure accurate timing to provide fish food automatically to improve fish health and growth and support better and consistent results. This optimized system provides better monitoring of environmental conditions, reduces reliance on manual maintenance, and increases overall productivity. Helps increase tilapia fish growth and plant productivity in modern aquaponic systems. This research shows the great potential of IoT technology in increasing the efficiency and productivity of aquaponic cultivation, so that it can push the fisheries sector in a more advanced and competitive direction. Therefore, the main conclusion that is expected is that this automation can increase the productivity of ecosystem balance, and can face the challenge of food security and move towards more environmentally friendly solutions, towards effective management in the future.

References

[1] J. Juniarti, N. Nazwirman, and I. Kusuma, “Sosialisasi Dan Pembinaan Budidaya Ikan Dalam Ember Untuk Ketahanan Pangan,” J. Pengabdi. Al-Ikhlas, vol. 6, no. 2, 2020, doi: 10.31602/jpaiuniska.v6i2.3899.
[2] Kementerian Kelautan dan Perikanan, “Peraturan Menteri Kelautan Dan Perikanan Republik Indonesia Nomor 17/Permen- KP/2020 Tentang Rencana Strategis Kementerian Kelautan dan Perikanan Tahun 2020-2024,” Kementeri. Kelaut. dan Perikan.,pp. 1–148, 2020.
[3] M. F. Sukadi, “Peningkatain Teknologi Budidaya Perikanan,” J. ikhtiologi Indones., vol. 2, no. 2, pp. 61–66, 2002.
[4] V. F. Baldan, Sani Kamil., Umiati, “Pengembangan Desa Wisata melalui Gerakan Vertical Garden di Desa Pojok Sukoharjo,”Pros. Semin. Nas. Pengabdi. Masy. LPPM UMJ. 24 Sept., pp. 3–4, 2019.
[5] E. Marlina, J. Peternakan, P. Studi Budidaya Perikanan Politeknik Negeri Lampung JlSoekarno-Hatta Rajabasa no, and B. Lampung, “Prosiding Seminar Nasional Tahunan Ke-V Hasil-Hasil Penelitian Perikanan dan Kelautan KAJIAN KANDUNGAN AMMONIA PADA BUDIDAYA IKAN NILA (Oreochromis niloticus) MENGGUNAKAN TEKNOLOGI AKUAPONIK TANAMAN TOMAT (Solanum lycopersicum),” pp. 181–187, 2016.
[6] Ramlah, S. Eddy, Z. Hasyim, and Hasan Munis Said, “Perbandingan Kandungan Gizi Ikan Nila Oreochromis niloticus Asal Danau Mawang Kabupaten Gowa dan Danau Universitas Hassanuddin Kota Makassar Comparison of Nutritional Content of Tilapia Oreochromis niloticus from Mawang’s Lake Gowa and Hassanuddin Univers,” J. Biol. Makassar, vol. 1, no. 1, pp. 39– 46, 2016.
[7] B. M. Hapsari, J. Hutabarat, and D. Harwanto, “Performa Kualitas Air, Pertumbuhan, dan Kelulushidupan Ikan Nila (Oreochromis niloticus) pada Sistem Akuaponik dengan Jenis Tanaman yang Berbeda,” Sains Akuakultur Trop., vol. 4, no. 1,pp. 78–89, 2020, doi: 10.14710/sat.v4i1.6425.
[8] A. A. Jaya, P. Pertanian, and N. Pangkajene, “IbKIK BUDIDAYA IKAN NILA SISTEM AKUAPONIK,” vol. 2, no. 1, pp. 37– 43, 2018.
[9] Y. Irawan, A. Febriani, R. Wahyuni, and Y. Devis, “Water quality measurement and filtering tools using Arduino Uno, PH sensor and TDS meter sensor,” J. Robot. Control, vol. 2, no. 5, pp. 357–362, 2021, doi: 10.18196/jrc.25107.
[10] W. Vernandhes, N. . Salahuddin, and A. Kowanda, “Smart Growbox Design With Temperature and Humidity Monitoring System Via the Internet,” Teknoin, vol. 22, no. 11, pp. 850–859, 2016, doi: 10.20885/teknoin.vol22.iss11.art6.
[11] A. Dutta, P. Dahal, P. Tamang, E. Saban Kumar, and R. Prajapati, “IoT based Aquaponics Monitoring,” 1st KEC Conf. Proc., no. September, pp. 75–80, 2018.
[12] R. Alfia, A. Widodo, N. Kholis, and Nurhayati, “Sistem Monitoring Kualitas Air Pada Sistem Akuaponik Berbasis Iot,” J. Tek. Elektro, vol. 10, no. 3, pp. 707–714, 2021.
[13] S. Suriana, A. P. Lubis, and E. Rahayu, “Sistem Monitoring Jarak Jauh Pada Suhu Kolam Ikan Nila Bangkok Memanfaatkan Internet of Things (IOT) Berbasis NODEMCUESP8266,” JUTSI (Jurnal Teknol. dan Sist. Informasi), vol. 1, no. 1, pp. 1–8, 2021, doi: 10.33330/jutsi.v1i1.1004.
[14] N. Aziezah, W. Sholihah, I. Novianty, M. Romadhona, and A. Mardiyono, “Sipekernik: Sistem Pemantau Kekeruhan Air dan Pengairan pada Akuaponik Menggunakan Sensor Turbidity, LDR dan Water Level,” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 4, pp. 261–271, 2023, doi: 10.35746/jtim.v4i4.324.
[15] E. Rohadi et al., “Sistem Monitoring Budidaya Ikan Lele Berbasis Internet Of Things Menggunakan Raspberry Pi,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, p. 745, 2018, doi: 10.25126/jtiik.2018561135.
[16] F. Fauziah, “Monitoring Tingkat Kekeruhan Air Pada Aquarium Budidaya Ikan Cupang,” Juisik, vol. 1, no. 3, 2021.
[17] B. Dewantara and I. Sulistiyowati, “Automatic Fish Feeder and Telegram Based Aquarium Water Level Monitoring [Rancang Bangun Pemberi Pakan Ikan Otomatis Dan Monitoring Ketinggian Air Aquarium Berbasis Telegram],” pp. 1–10.
[18] A. W. Atmaja, D. R. Sijabat, and F. E. Purwiantono, “Automation of Aquaponic Choy Sum and Nile Tilapia Using Arduino Microcontroller,” J. Informatics Telecommun. Eng., vol. 4, no. 2, pp. 301–309, 2021, doi: 10.31289/jite.v4i2.4395.
[19] Zulfikar, A. Muslih, K. Nisak, and A. Fitria, “Training on Making Simple Aquaponics for Narrow Land Optimization in Pulorejo Village, Tembelang District,” J. Pertan. J. Devotion. Masy., vol. 2, pp. 2–7, 2021.
[20] A. R. Safitri and M. A. Muslim, “Improved Accuracy of Naive Bayes Classifier for Determination of Customer Churn Uses SMOTE and Genetic Algorithms,” J. Soft Comput. Explor., vol. 1, no. 1, Sep. 2020, doi: 10.52465/joscex.v1i1.5.
[21] D. Monika, M. Muchlishah, and M. Dwiyaniti, “PEMANFAATAN PLTS SEBAGAI SUMBER ENERGI AKUAPONIK DI DESA LEUWI KARET, KAMPUNG GUHA KULON, KLAPA NUNGGAL KABUPATEN BOGOR,” Dharmakarya, vol. 11,
no. 1, p. 73, Mar. 2022, doi: 10.24198/dharmakarya.v11i1.36267.
[22] S. Mashumah, “Design Hydroponic Nutrient Film Technique Using Fuzzy Logic Control Based on Electrical Conductivity and Image,” Inst. Teknol. Ten Nop., 2018.
[23] S. Wibowo and A. A. S., “Aplikasi Hidroponik NFT Pada Budidaya Pakcoy (Brassica Rapa Chinensis),” Indones. J. Appl. Agric., vol. 13, no. 3, 2013, doi: 10.25181/jppt.v13i3.180.
Published
2024-08-15
How to Cite
Anggita, R. D., Stywati, Jaya, D. S., & Edistira, K. (2024). The Automating Aquaponics System With RTC, Turbidity Sensor and Water Level Sensor. Proceeding of International Conference of Religion, Health, Education, Science and Technology, 1(1), 434-446. https://doi.org/10.35316/icorhestech.v1i1.5673
Abstract viewed = 30 times
FULL TEXT PDF downloaded = 38 times