Robust Regression Analysis Of Gm Estimation On The Poverty Gap Index Of Indonesian Provinces

  • Fauzaan Nabil Statistics Departement, Sebelas Maret University, Central Java, Indonesia
  • Yuliana Susanti Statistics Departement, Sebelas Maret University, Central Java, Indonesia
  • Etik Zukhronah Statistics Departement, Sebelas Maret University, Central Java, Indonesia
Keywords: Poverty Gap Index, Robust Regression, GM Estimation

Abstract

Poverty has been a severe problem in Indonesia since the post-independence era until today. One indicator that can be used to measure the poverty level in a region is the poverty gap index, which describes the average size of the gap between each population and the poverty line. The data on the poverty gap index in Indonesia in 2022 contains outliers and misleading data that are not normally distributed, so the least squares method is inappropriate. One method that can be used to overcome the outlier problem is robust regression analysis. This study aims to determine the Generalized M (GM) estimation robust regression model and the factors that affect the poverty gap index in provinces in Indonesia. The estimation used is GM estimation, the development of M estimation when M estimation is less sensitive to outliers. The results showed that the GM estimation robust regression model has a value of 100%  It was also found that the factors that significantly affect the poverty gap index in Indonesia in 2022 are the percentage of poor people, the Gini ratio, the poverty line, and the percentage of households with a PLN electricity source.

References

Ayu, G., Suciptawati, P., dan Ayu, Ida. (2022). Identifikasi Faktor yang Memengaruhi Gini Ratio di Indonesia. E-Jurnal Matematika, Vol 11.
Chen, C. (2002). Robust Regression and Outlier Detection with the Robust Procedure. North Carolina: SAS Institute.
Cheng, C. L., Shalabh & Garg, G. (2014). Coefficient of Determination for Multiple Measurement Error Models. Journal of Multivariate Analysis. Vol 126.
Draper, N., and Smith, H. (1992). Applied Regression Analysis 2nd Edition. New York: John Wiley & Sons, Inc.
Freund, R. J., Wilson, W. J. & Sa, P., (2006). Regression Analysis Statistical Modeling of a Response Variable Second Edition. Boston: Academic Press.
Junus, F.D. (2021). Estimasi Parameter Model Mixed Geographically Weighted Regression Menggunakan Metode Generalized M-Estimator [Skripsi]. Universitas Hassanudin.
Kusuma, I., Susanti, Y., dan Subanti, S. (2021). Pemodelan Kemiskinan di Indonesia Menggunakan Analisis Regresi Robust. Seminar Nasional Aplikasi Sains & Teknologi.Jurusan Statistika FMIPA UNS.
Montgomery, D. C., & Peck, E. A. (2012). Introduction to Linear Regression Analysis. New York: John Wiley & Sons, Inc.
Nurdin, N., Raupong, Islamiyati. A., (2014). Penggunaan Regresi Robust Pada Data Yang Mengandung Pencilan Dengan Metode Momen. Jurnal Matematika, Statistika & Komputasi. Vol 10, No. 2.
Rousseeuw, P. J. & Hubert, M., (1997). Recent Developments in Progress. L-1 Statistical Procedures and Related Topics. Vol 31.
Susanti, Y., Pratiwi, H., dan Qona’ah, N. (2021). Regresi Robust (Teori dan Penerapannya). Surakarta : UNS Press.
Wilcox, R., (2005). Introduction to Robust Estimation and Hypothesis Testing Second Edition San Diego: Academic Press.
Published
2024-08-15
How to Cite
Nabil, F., Susanti, Y., & Zukhronah, E. (2024). Robust Regression Analysis Of Gm Estimation On The Poverty Gap Index Of Indonesian Provinces. Proceeding of International Conference of Religion, Health, Education, Science and Technology, 1(1), 369-374. https://doi.org/10.35316/icorhestech.v1i1.5660
Abstract viewed = 73 times
FULL TEXT PDF downloaded = 38 times