The Complexity of High School Students' Semiotic Graphics in Solving Statistical Problems

Authors

  • Ahmad Choirul Anam Tadris Matematika, Fakultas Tarbiyah, Universitas Ibrahimy Situbondo, Jawa Timur 68374, Indonesia

DOI:

https://doi.org/10.35316/jummy.v3i1.7882

Keywords:

Field Dependent, Field Independent, Mathematics Education, Semiotic Complexity, Statistical Graphs

Abstract

The ability to represent data graphically is a crucial skill in learning statistics, yet it involves complex semiotic processes that are often influenced by students’ cognitive styles. This study was conducted to explore the semiotic complexity of high school students’ statistical graphs about their cognitive styles: field dependent (FD) and field independent (FI). Using a descriptive qualitative approach, four 12th-grade students were selected based on the Group Embedded Figures Test (GEFT) and a standardized mathematics ability test to ensure cognitive style categorization and equal academic level. Data were collected through a Semiotic Graph Complexity Test (TKSG) and semi-structured interviews focusing on four semiotic components: problems, actions, concepts, and properties.The findings show that students with FI cognitive styles demonstrated a higher level of semiotic complexity, reaching the "joint graphs" level, characterized by coherent integration of data, appropriate graph selection, and accurate symbolic interpretation. In contrast, FD students exhibited lower levels of complexity, often limited to literal and superficial representations. These results confirm that cognitive styles significantly affect students’ abilities to transform statistical data into meaningful graphical representations. This study highlights the importance of differentiated instruction based on cognitive styles, suggesting explicit scaffolding for FD students and more explorative tasks for FI students to enhance graph comprehension and statistical literacy.

References

Afifah, Slamet Soro, & A. faradillah. (2022). Mathematic Reasoning Ability Based on Cognitive Style Field Dependent, Field Intermediate, and Field Independent. Jurnal Pendidikan MIPA, 23(2), 880–893.

Anam, A. C. (2021). Abstraksi Reflektif Siswa Sekolah Menengah Pertama Pada Materi Segiempat dan Segitiga. Alifmatika: Jurnal Pendidikan Dan Pembelajaran Matematika, 3(2), 107–121. https://doi.org/10.35316/alifmatika.2021.v3i2.107-121

Arteaga, P., Batanero, C., Contreras, J. M., & Canadas, G. R. (2015). Statistical graphs complexity and reading levels: a study with prospective teachers. Statistique et Enseignement, 6(1), 3–23. https://doi.org/10.3406/staso.2015.1301

Curcio, F. R. (1987). Comprehension of mathematical relationships expressed in graphs. Journal for Research in Mathematics Education, 18(5), 382–393. https://doi.org/https://doi.org/10.2307/749086

Latuputty, A. C., Laurens, T., & Ngilawajan, D. A. (2024). Profil Pemecahan Masalah Matematika Siswa Pada Materi Turunan Ditinjau Dari Gaya Kognitif Field Independent (Fi) Dan Field Dependent (Fd). Jurnal Pendidikan Matematika Unpatti, 5(3), 195–202. https://doi.org/10.30598/jpmunpatti.v5.i3.p195-202

National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Key Curriculum Press.

Ningtiyas, H. A. (2021). Representasi matematis siswa SMA ditinjau dari gaya kognitif field dependent dan field independent. MATHEdunesa, 9(3), 579–588. https://doi.org/https://doi.org/10.26740/mathedunesa.v9n3.p579-588

Nisa, N. A., Prayitno, S., Hikmah, N., & ... (2024). Analisis Kemampuan Berpikir Kritis Matematis Pokok Bahasan Aritmatika Sosial Ditinjau dari Gaya Kognitif Siswa. Journal of Classroom …, 6(1), 44–50. https://jppipa.unram.ac.id/index.php/jcar/article/view/5968%0Ahttps://jppipa.unram.ac.id/index.php/jcar/article/download/5968/4549

Nugraha, B., Subiyantoro, S., & Purwitasari, K. (2023). Meningkatkan Pemahaman Siswa pada Materi Penyajian Data Mata Pelajaran Matematika Melalui Penggunaan Media Interaktif Canva. Edudikara: Jurnal Pendidikan Dan Pembelajaran, 8(4), 166–177. https://doi.org/10.32585/edudikara.v8i4.360

Presmeg, N. (2006). Research on Visualization in Learning and Teaching Mathematics. In A. Gutiérrez, & P. Boero (Eds.), Handbook of Research on the Psychology of Mathematics Education: Past, Present and Future. Sense.

Rahman & Makmur Nurdin & Rosmalah. (2021). Perbandingan Hasil Belajar Matematika Siswa Kelas V yang. 4(4), 697–705.

Safari, Yusuf & Nurhida, P. (2024). Pentingnya Pemahaman Konsep Dasar Matematika Dalam Pembelajaran Matematika. 3, 9817–9824.

Wahyu Wijayaningrum, Ketut Budayasa, R. S. (2024). Profil Pemahaman Konsep Fungsi Siswa SMP Ditinjau dari Gaya Kognitif Field Independent dan Field Dependent. 6(2), 361–371.

Witkin, H. A. (1981). Cognitive styles, essence and origins : field dependence and field independence. International Universities Press.

Downloads

Published

2025-08-12

How to Cite

Anam, A. C. (2025). The Complexity of High School Students’ Semiotic Graphics in Solving Statistical Problems. Jurnal Multidisiplin Ibrahimy, 3(1), 102–116. https://doi.org/10.35316/jummy.v3i1.7882