Klasifikasi Kanker Payudara Menggunakan Algoritma SVM dengan Kernel RBF, Linier, dan Sigmoid

  • Ginanjar Abdurrahman Fakultas Teknik, Universitas Muhammadiyah Jember
Keywords: Cancer, Support Vector Machine, Kernel Linier, Kernel RBF, Kernel Sigmoid

Abstract

Breast cancer ranks first in both the gender category and the death rate. Late treatment is often found in cases of breast cancer which causes an increase in the risk factors for this cancer. For this reason, early detection of breast cancer is needed, so that treatment can be done in a timely manner, so that the death rate due to breast cancer can be reduced. For this reason, this article offers early detection of breast cancer using classification. The dataset in this study used the Wisconsin breast cancer dataset taken from Kaggle. Initially the dataset has a missing value, besides that the categorical data is not yet in numerical form, so it is necessary to do preprocessing with the missing value imputing technique and encoding to convert categorical data into numeric data. The dataset is divided into two proportions, namely 80% as training data and 20% as testing data. In the classification process, datasets that have been preprocessed are classified using SVM with three different kernels, namely the linear kernel, the RBF kernel, and the Sigmoid kernel. Based on the research results that have been obtained, the linear kernel shows the best classification results when applied to the SVM classification, namely with an accuracy value of up to 99%, followed by RBF kernel performance with an accuracy rate of 92%, and finally the sigmoid kernel with an accuracy value of 41%

References

[1] A. I. Sutnick and S. Gunawan, “Cancer in Indonesia,” JAMA J. Am. Med. Assoc., vol. 247, no. 22, pp. 3087–3088, 2021, doi: 10.1001/jama.247.22.3087.
[2] A. ; Nurrohmah, A. Aprianti, and S. Hartutik, “Risk factors of breast cancer in burma,” Gaster J. Heal. Sci., vol. 21, no. 4, pp. 432–437, 2022, doi: https://doi.org/10.30787/gaster.v20i1.777.
[3] P. Bimo, N. Setio, D. Retno, S. Saputro, and B. Winarno, “Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64–71, 2020.
[4] R. Nanda, E. Haerani, S. K. Gusti, and S. Ramadhani, “Klasifikasi Berita Menggunakan Metode Support Vector Machine,” vol. 5, no. 2, pp. 269–278, 2022.
[5] I. Mahendro and D. Abimanto, “Analisa Kepuasan Mahasiswa Terhadap E-Learning Menggunakan Algoritma Support Vector Machine,” J. Sains Dan Teknol. Marit., vol. 23, no. 1, p. 97, 2022, doi: 10.33556/jstm.v23i1.333.
[6] G. N. Kurniawati, “Algoritma Machine Learning yang Harus Kamu Pelajari di Tahun 2021,” 2021. https://www.dqlab.id/algoritma-machine-learning-yang-perlu-dipelajari (accessed Feb. 05, 2022).
[7] M. N. U. R. Akbar, “KLASIFIKASI KANKER MENGGUNAKAN ALGORITMA NNGE , RANDOM FOREST , DAN RANDOM COMMITEE,” vol. 5, pp. 289–298, 2020.
[8] A. Zaiem and N. Charibaldi, “Komparasi Fungsi Kernel Metode Support Vector Machine untuk Analisis Sentimen Instagram dan Twitter ( Studi Kasus : Komisi Pemberantasan Korupsi ),” vol. 9, no. 2, pp. 33–42, 2021.
[9] P. Metode, S. Vector, and M. Svm, “PENERAPAN METODE SUPPORT VECTOR MACHINE (SVM) UNTUK MENDETEKSI PENYALAHGUNAAN NARKOBA Application of Support Vector Machine (SVM) Method to Detect Drug Abuse,” vol. 01, no. 02, pp. 111–122, 2022.
[10] A. Fahrurozi and H. Parasian, “IMPLEMENTASI ALGORITMA KLASIFIKASI SUPPORT VECTOR MACHINE UNTUK ANALISA SENTIMEN PENGGUNA,” pp. 149–162, 2021.
Published
2023-07-20
How to Cite
Abdurrahman, G. (2023). Klasifikasi Kanker Payudara Menggunakan Algoritma SVM dengan Kernel RBF, Linier, dan Sigmoid. JUSTIFY : Jurnal Sistem Informasi Ibrahimy, 2(1), 74-80. https://doi.org/10.35316/justify.v2i1.3370
Abstract viewed = 391 times
PDF (Bahasa Indonesia) downloaded = 390 times