Model Optimasi Produksi Tambak Udang Berbasis Daya Dukung Perairan
Abstract
Tujuan penelitian adalah untuk menentukan kapasitas produksi dan luas blahan optimal tambak udang intensif berdasarkan daya dukung perairan pesisir Kecamatan Banyuputih dengan permodelan sistem dinamis.Analisis otimasi produksi tambak udang intensif dilakukan dengan pendekatan permodelan sistem dinamis menggunakan alat bantu software Stella ver. 9.02. Variabel yang disimulasi pada analisa pemodelan ini adalah variabel kapasitas oksigen perairan, kuantitas limbah budidaya, biomassa udang, bobot rata-rata udang, dan prosentase tingkat kelulushidupan udang selama satu siklus budidaya. Hasil simulasi model dinamis menunjukkan bahwa sistem budidaya udang intensif padat tebar (110 ekor/m2) dengan penerapan 2 (dua) kali panen parsial (pada saat umur udang 70 hari dan 90 hari) menghasilkan produktifitas biomassa udang yang paling optimal serta beban limbah TSS pada perairan pesisir yang paling kecil (sedikit) dibandingkan dengan sisitem budidaya intensif dengan tingkat padat tebar (130 ekor/m2), (150 ekor/m2), dan (170 ekor/m2). Penerapan sisitem bididaya dengan padat 110 ekor/m2 memberikan tingkat daya dukung optimal perairan untuk pengembangan lahan tambak udang intensif seluas 45 ha atau 65.4% dari daya dukung maksimal perairan (67,8 ha)dengan kapasitas produksi optimal sebesar 1.165.327,43 kg udang
Downloads
References
Anand, P.S.S., Balasubramanian C.P., Christina L., Kumar S., Biswas G., Ghoshal D.D.T.K., Vijayan K.K., 2019. Substrate based black tiger shrimp, Penaeus monodon culture: Stocking density, aeration and their effect on growth performance, water quality and periphyton development. Aquaculture. 507: 411-418
Dauda, A.B., Ajadi A., Tola-Fabunmi A.S., Akinwole A.O., 2019. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries. 4:81-88
Chapman, E.J., dan Byron C.J., 2018. The flexible application of carrying capacity in ecology. Global Ecology and Conservation. 13: 00365
Fan, L., dan Li Q.X., 2019. Characteristics of intestinal microbiota in the Pacific white shrimp Litopenaeus vannamei differing growth performances in the marine cultured environment. Aquaculture. 505: 450-461
Islam, M.S., Khan S., Tanaka M., 2004. Waste loading in shrimp and fish processing effluents: potential source of hazards to the coastal and nearshore environments. Marine Pollution Bulletin. 49: 103-110
Jannathulla, R., Chitra V., Vasanthakumar D., Nagavel A., Ambasankar K., Muralidhar M., Dayal J.S., 2019. Effect of dietary lipid/essential fatty acid level on Pacific whiteleg shrimp, Litopenaeus vannamei (Boone, 1931) reared at three different water salinities –Emphasis on growth, hemolymph indices and body composition. Aquaculture. 513: 734-405
Julpan., Nababan E.B., dan Zarlis M., 2015. Analisis fungsi aktivasi sigmoid biner dan sigmoid bipolar dalam algoritma BACKPROPAGATION pada prediksi kemampuan siswa. Jurnal Teknovasi. 2(1): 103-116
Liu G., Zhu S., Liu D., Guo X., dan Ye Z., 2017. Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance againstVibrio harveyi in a biofloc system. Fish and Shellfish Immunology. 67:19-26
Miller, D., and Semmens K., 2002. Waste Management in Aquaculture. Aquaculture Information Series Publication. 1:1-10
Muta’ali L., 2011. Environmental carrying capacity based on spatial Planning. Indonesian Journal of Geography. 43(2): 142-155
Neori, A., Troell M., Chopin T., Yarish C., 2007. The need for a balanced ecosystem approach to blue revolution aquaculture. Environment. 49(3): 1-37
Nguyen, TA.T., Nguyen K.A.T., dan Jolly C., 2019. Is Super-Intensification the Solution to ShrimpProduction and Export Sustainability?. Sustainability. 11: 52-77
Sterman, J.D., 2001. System dynamics modeling. IEEE Engineering management review. 43(4): 1-25
Sookying, D., Silva F.S.D., Davis D.A., Hanson T.R., 2011. Effects of stocking density on the performance of Pacific white shrimpLitopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybeanmeal diet. Aquaculture. 319: 232-239
Summerfelt, S.T., Adler P.R., Glenn D.M., and Kretschmann R.N., 1999. Aquaculture sludge removal and stabilization within created wetlands. Aquacultural Engineering. 19:81-92
Turcois A.E., dan Papenbrock J., 2014. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?. Sustainability. 6: 836-856
Wang, S., dan Chaovalitwongse W.A., 2011. Evaluating and Comparing Forecasting Models. International Journal of Forecasting, 14(1):35–62
Copyright (c) 2022 Ika Junia Ningsih, Abdul Muqsith
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.