OPTIMASI ALGORITMA ALGA UNTUK MENINGKATKAN LAJU KONVERGENSI

  • Hari Santoso Manajemen Informatika, AMIK Ibrahimy Situbondo
  • Lukman Fakih Lidimilah Manajemen Informatika, AMIK Ibrahimy Situbondo
Keywords: atificial alga algorithm, optimization, convergence rate, pressure vessel design

Abstract

Artificial AlgaeAlgorithm (AAA) is an optimization algorithm that has advantages of swarm algorithm model and evolution model. AAA consists of three phases of helical movement phase, reproduction, and adaptation. Helical movement is a three-dimensional movement with the direction of x, y, and z which is very influential in the rate of convergence and diversity of solutions. Helical motion optimization aims to increase the convergence rate by moving the algae to the best colony in the population. Algae Algorithm Optimization (AAA ') was tested with 25 objective functions of CEC'05 and implemented in case of pressure vessel design optimization. The results of the CEC'05 function test show that there is an increase in convergence rate at AAA ', but at worst condition of AAA' becomes less stable and trapped in local optima. The complexity analysis shows that AAA has the complexity of O (M3N2O) and AAA 'has the complexity of O (M2N2O) with M is the number of colonies, N is the number of algae individuals, and O is the maximum of the evaluation function. The results of the implementation of pressure vessel design optimization show that AAA's execution time increased 1,103 times faster than AAA. The increase in speed is due to the tournament selection process in AAA performed before the helical motion, whereas in AAA 'is done if the solution after movement is no better than before. At its best, AAA 'found a solution 4.5921 times faster than AAA. At worst, AAA 'stuck on local optima because helical movement is too focused on global best that is not necessarily global optima.

 

Downloads

Download data is not yet available.

References

Taqiyuddin dan Sasongko P.H. 2013. Studi Optimal Power Flow pada Sistem Kelistrikan 500 kV Jawa-Bali dengan Menggunakan Particle Swarm Optimization (PSO). Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI) Vol. 2 No. 3.

A.S. Sinaga. 2014. Pembebanan Ekonomis dengan Pengendalian Emisi pada Pembangkit Termis Menggunakan Algoritma Evolusi Diferensial. Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI) Vol.3 No.2.

A.A. Aburomman & Mamun Bin Ibne R. 2016. A Novel SVM-kNN-PSO Ensemble Method For Intrusion Detection System. Applied Soft Computing Vol.38, hlm. 360-372.

M. Ranjani & P. Murugesan. 2015. Optimal Fuzzy Controller Parameters Using PSO For Speed Control of Quasi-Z Source DC/DC Converter Fed Drive. Applied Soft Computing Vol.27, hlm. 332-356.

Ruhul A. Sarker & Charles S. Newton. 2008. Optimization Modelling : A Practival Approach. Boca Raton, CRC Press.

Binitha S. & S.S. Sathya. 2012. A Survey of Bio inspired Optimization Algorithms. International Journal of Soft Computing and Engineering (IJSCE), Vol,2, Issue-2.

K.T. Meetei. 2014. A Survey: Swarm Intelligence vs. Genetic Algorithm. International Journal of Science and Research (IJSR), hlm. 231-235.

Rashmi A. Mahale & S.D.Chavan. 2012. A Survey: Evolutionary and Swarm Based Bio-Inspired Optimization Algorithms. International Journal of Scientific and Research Publications Vol.2, Issue 12.

Xin-She Yang, 2014. Swarm Intelligence Based Algorithms: A Critical Analysis. Evolutionary Intelligence Vol.7, hlm. 17-28.

Millie Pant & Radha Thangaraj. 2007. A New Particle Swarm Optimization with Quadratic Crossover. International Conference of Advanced Computing and Communications (ADCOM), hlm. 81–86.

Sabine Helwig, Frank Neumann, dan Rolf Wanka. 2011. Particle Swarm Optimization with Velocity Adaptation. Handbook of Swarm Intelligence Vol.8 of the series Adaptation, Learning, and Optimization, hal. 155-173.

Swagatam Das & Ajith Abraham. 2006. Synergy of Particle Swarm Optimization with Evolutionary Algorithms for Intelligent Search and Optimization. Proceedings of IEEE International Congress on Evolutionary Computation Vol.1, hlm. 84-88.

Kedar N.D. & Raghav P.P. 2014. Synergy of Differential Evolution and Particle Swarm Optimization. Proceedings of the Third International Conference on Soft Computing for Problem Solving Vol.258 of the series Advances in Intelligent Systems and Computing, hlm. 143-160.

Sait Ali Uymaz, Gulay Tezel, & Esra Yel. 2015. Artificial Algae Algorithm (AAA) for nonlinear global optimization, Applied Soft Computing Vol.31, hlm. 153-171.

G.C. Onwubolu & B.V. Babu. 2004. New Optimization Techniques in Engineering. Springer, Berlin. Germany.

Published
2017-06-09
How to Cite
Santoso, H., & Lidimilah, L. F. (2017). OPTIMASI ALGORITMA ALGA UNTUK MENINGKATKAN LAJU KONVERGENSI. Jurnal Ilmiah Informatika, 2(1), 68-82. https://doi.org/10.35316/jimi.v2i1.446
Abstract viewed = 175 times
PDF (Bahasa Indonesia) downloaded = 0 times