DESAIN MOZAIK PADA BINGKAI BELAH KETUPAT DENGAN MOTIF FRAKTAL DAN KONSTRUKSINYA PADA MATLAB

  • Miftahur Roifah IKIP PGRI Jember
Keywords: mosaic, Pinwheel tiling, rhombus, fractal

Abstract

Mosaics are the artistic creations made from pieces of shape which are then arranged and affixed to a plane and designed using a tiling pattern with a basic pattern of geometric objects.. The progress of science and technology enables innovations especially after the invention of computers, one of which is fractals. Fractals are widely used in computer graphics to create amazing shapes. Mosaic designs can also be made with fractal concepts. The aims of this research are to get the procedure for mosaic design on circle and rhombus frames by hexagon and Pinwheel tiling with fractal motif. The research method covered the design of basic form for mosaic in the interior of circle and rhombus. Furthermore fill the basic form of mosaic wuth some fractal motif. The results of this research are the procedure to design some basic form of mosaic with the following steps. Firstly, divide the interior area of the circle and rhombus. Secondly, identify the symmetrical basic form. Thirdly, design the basic form of mosaic. Whereas procedure to fill the basic form of mosaic with fractal motif with the following steps. Firstly, choose the specify fractal motif. Secondly, fill the motif into each basic form. Thirdly, fill motif on the background. Then the final step is programmed the mosaics with Matlab 7 software.

Downloads

Download data is not yet available.

References

Addison, P. S. (1997). Fractals and chaos: an illustrated course. CRC Press.

As’ari, A. R., Tohir, M., Valentino, E., Imron, Z., & Taufik, I. (2016). Matematika SMP/MTs Kelas VII. Jakarta: Kementrian Pendidikan dan Kebudayaan Republik Indonesia.

As’ari, A. R., Tohir, M., Valentino, E., Imron, Z., & Taufiq, I. (2017). Buku Guru Matematika (Revisi). Jakarta: Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud.

Bourke, P. (1991). An introduction to fractals. Noongard: The University of Western of Australia, Consulta, 5.

Burkholder, D. G. (2017). Unexpected Beauty Hidden in Radin-Conway’s Pinwheel Tiling. Bridges Baltimore 2015: Mathematics, Music, Art, Architecture, Culture, 383–386.

Mandelbrot, B. B. (1983). The fractal geometry of nature (Vol. 173). WH freeman New York.

Murihani, E., Kusno, K., & Susanto, K. A. (2012). Desain Mozaik Pada Interior Persegi Berkarakter Barisan Geometri. KadikmA, 3(3).

Nuh, M. (2014). Buku guru matematika SMP/MTs kelas VIII (Kurikulum 2013). Jakarta: Kementerian Pendidikan dan Kebudayaan.

Rosyadi, I., Kusno, K., & Santoso, K. A. (2012). Desain Motif Mozaik pada Reguler Decagon Berbasis Golden Triangle. KadikmA, 3(3).

Widiastuti, D. (2014). Rancang Bangun Mozaik Ubin Bingkai Dasar Lingkaran dan Persegi Motif Poligon, Lingkaran dan Elips. In Tesis. Jember: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

Published
2019-12-27
How to Cite
Roifah, M. (2019). DESAIN MOZAIK PADA BINGKAI BELAH KETUPAT DENGAN MOTIF FRAKTAL DAN KONSTRUKSINYA PADA MATLAB. Alifmatika: Jurnal Pendidikan Dan Pembelajaran Matematika, 1(1), 83-93. https://doi.org/10.35316/alifmatika.2019.v1i1.83-93
Abstract viewed = 545 times
FULL TEXT PDF downloaded = 503 times