DESAIN MOZAIK PADA BINGKAI BELAH KETUPAT DENGAN MOTIF FRAKTAL DAN KONSTRUKSINYA PADA MATLAB
Abstract
Mosaics are the artistic creations made from pieces of shape which are then arranged and affixed to a plane and designed using a tiling pattern with a basic pattern of geometric objects.. The progress of science and technology enables innovations especially after the invention of computers, one of which is fractals. Fractals are widely used in computer graphics to create amazing shapes. Mosaic designs can also be made with fractal concepts. The aims of this research are to get the procedure for mosaic design on circle and rhombus frames by hexagon and Pinwheel tiling with fractal motif. The research method covered the design of basic form for mosaic in the interior of circle and rhombus. Furthermore fill the basic form of mosaic wuth some fractal motif. The results of this research are the procedure to design some basic form of mosaic with the following steps. Firstly, divide the interior area of the circle and rhombus. Secondly, identify the symmetrical basic form. Thirdly, design the basic form of mosaic. Whereas procedure to fill the basic form of mosaic with fractal motif with the following steps. Firstly, choose the specify fractal motif. Secondly, fill the motif into each basic form. Thirdly, fill motif on the background. Then the final step is programmed the mosaics with Matlab 7 software.
Downloads
References
Addison, P. S. (1997). Fractals and chaos: an illustrated course. CRC Press.
As’ari, A. R., Tohir, M., Valentino, E., Imron, Z., & Taufik, I. (2016). Matematika SMP/MTs Kelas VII. Jakarta: Kementrian Pendidikan dan Kebudayaan Republik Indonesia.
As’ari, A. R., Tohir, M., Valentino, E., Imron, Z., & Taufiq, I. (2017). Buku Guru Matematika (Revisi). Jakarta: Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud.
Bourke, P. (1991). An introduction to fractals. Noongard: The University of Western of Australia, Consulta, 5.
Burkholder, D. G. (2017). Unexpected Beauty Hidden in Radin-Conway’s Pinwheel Tiling. Bridges Baltimore 2015: Mathematics, Music, Art, Architecture, Culture, 383–386.
Mandelbrot, B. B. (1983). The fractal geometry of nature (Vol. 173). WH freeman New York.
Murihani, E., Kusno, K., & Susanto, K. A. (2012). Desain Mozaik Pada Interior Persegi Berkarakter Barisan Geometri. KadikmA, 3(3).
Nuh, M. (2014). Buku guru matematika SMP/MTs kelas VIII (Kurikulum 2013). Jakarta: Kementerian Pendidikan dan Kebudayaan.
Rosyadi, I., Kusno, K., & Santoso, K. A. (2012). Desain Motif Mozaik pada Reguler Decagon Berbasis Golden Triangle. KadikmA, 3(3).
Widiastuti, D. (2014). Rancang Bangun Mozaik Ubin Bingkai Dasar Lingkaran dan Persegi Motif Poligon, Lingkaran dan Elips. In Tesis. Jember: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.
Copyright (c) 2019 Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
COPYRIGHT NOTICE
Author (s) who publish in Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika agree to the following terms:
- The Author (s) submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, Tarbiyah Faculty of Ibrahimy University as the publisher of the journal. Consecutively, author(s) still retain some rights to use and share their own published articles without written permission from Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Copyright encompasses rights to publish and provide the manuscripts in all forms and media for the purpose of publication and dissemination, and the authority to enforce the rights in the manuscript, for example in the case of plagiarism or in copyright infringement.
- Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika are the sole responsibility of their respective authors and advertisers.
- The Copyright Transfer Form can be downloaded here [Copyright Transfer Form Alifmatika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document to alifmatika[at]ibrahimy.ac.id or upload the scanned document in the comments column when sending the manuscript.