Local edge (a, d) –antimagic coloring on sunflower, umbrella graph and its application

  • Robiatul Adawiyah Department of Mathematics Education, University of Jember, East Java 68121, Indonesia
  • Indi Izzah Makhfudloh Department of Mathematics Education, University of Jember, East Java 68121, Indonesia
  • Rafiantika Megahnia Prihandini Department of Mathematics Education, University of Jember, East Java 68121, Indonesia https://orcid.org/0000-0002-6611-6458
Keywords: local edge (a, d) –antimagic coloring, sunflower graph, umbrella graph

Abstract

Suppose a graph G = (V, E) is a simple, connected and finite graph with vertex set V(G) and an edge set E(G). The local edge antimagic coloring is a combination of local antimagic labelling and edge coloring. A mapping f∶ V (G)→ {1, 2, ..., |V (G)|} is called local edge antimagic coloring if every two incident edges e_1and e_2, then the edge weights of e_1and e_2 maynot be the same, w(e_1) ≠ w(e_2), with e = uv ∈ G, w(e) = f(u)+ f(v) with the rule that the edges e are colored according to their weights, w_e. Local edge antimagic coloring has developed into local (a,d)-antimagic coloring. Local antimagic coloring is called local (a,d)-antimagic coloring if the set of edge weights forms an arithmetic sequence with a as an initial value and d as a difference value. The graphs used in this study are sunflower graphs and umbrella graphs. This research will also discuss one of the applications of local edge (a,d)-antimagic coloring, namely the design of the Sidoarjo line batik motif. The result show that χ_le(3,1) (Sf_n) = 3n and χ_le(3n/2,1) (U_(m,n) ) = m+1 . The local (a,d)-antimagic coloring is formed into a batik motif design with characteristics from the Sidoarjo region.

Downloads

Download data is not yet available.

References

Adawiyah, R., & Prihandini, R. M. (2022). Some wheel related graph and it’s local edge metric dimension. Pancaran Pendidikan, 11(3), 65-76. https://www.pancaranpendidikan.or.id/index.php/pancaran/article/view/426

Adawiyah, R., Prihandini, R. M., Albirri, E. R., Agustin, I. H., & Alfarisi, R. (2019). The local multiset dimension of unicyclic graph. IOP Conference Series: Earth and Environmental Science, 243(1), 1-8. https://doi.org/10.1088/1755-1315/243/1/012075

Agustin, I. (2017). Local edge antimagic coloring of graphs. Far East Journal of Mathematical Sciences, 102(9), 25–41. http://dx.doi.org/10.17654/MS102091925

Agustin, I., & Dafik, D. (2022). On the local (a,d)-antimagic coloring of graphs. In Press.

Agustin, I. H., Dafik, Latifah, S., & Prihandini, R. M. (2017). A super (a, d)-bm-antimagic total covering of ageneralized amalgamation of fan graphs. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 4(4), 146–154. https://doi.org/10.18860/ca.v4i4.3758

Agustin, I. H., Hasan, M., Alfarisi, R., Kristiana, A. I., & Prihandini, R. M. (2018). Local edge antimagic coloring of comb product of graphs. Journal of Physics: Conference Series, 1008(1), 1-10. https://doi.org/10.1088/1742-6596/1008/1/012038

Agustin, I., & Prihandini, R. (2019). P2▹ H-super antimagic total labelling of comb product of graphs. AKCE International Journal of Graphs and Combinatorics, 16(2), 163–171. https://doi.org/10.1016/j.akcej.2018.01.008

Almaidah, F. P., Dafik, Kristiana, A. I., Adawiyah, R., & Prihandini, R. M. (2022). On local (a, d)-antimagic coloring of some specific classes of graphs. In 6th International Conference of Combinatorics, Graph Theory, and Network Topology (ICCGANT 2022), Atlantis Press. 156-169. https://doi.org/10.2991/978-94-6463-138-8_14

Chartrand, G., & Zhang, P. (2008). Chromatic graph theory. Chapman and Hall/CRC. https://www.taylorfrancis.com/books/mono/10.1201/9781584888017/chromatic-graph-theory-gary-chartrand-ping-zhang

Chartrand, G., & Zhang, P. (2012). A first course in graph theory. Dover Publications, Inc. https://books.google.co.id/books/about/A_First_Course_in_Graph_Theory.html?id=ocIr0RHyI8oC&redir_esc=y

Dafik, Agustin, I., Slamin, Adawiyah, R., & Kurniawati, E. (2021). On the study of local antimagic vertex coloring of graphs and their operations. Journal of Physics:Conference Series, 1836(1), 1-8. https://doi.org/10.1088/1742-6596/1836/1/012018

Figueroa-Centeno Ichishima, R., & Muntaner-Batle, F. (2021). The place of super edge-magic labelings among other classes of labelings. Discrete Mathematics, 231(1-3), 153-168. https://doi.org/10.1016/S0012-365X(00)00314-9

Gallian, J. (2022). A Dinamic Survey Of Graph Labelling. GallianSurvey. https://www.combinatorics.org/files/Surveys/ds6/ds6v25-2022.pdf

Grifin, C. (2012). Graph theory. creative commons attribution-noncommercial-share.

Guichard, D. (2022). An introduction to combinatorics and graph theory. CRC Press. https://www.whitman.edu/mathematics/cgt_online/cgt.pdf

Kristiana, A. I., Alfarisi, R., Dafik, & Azahra, N. (2022). Local irregular vertex coloring of some families graph. Journal of Discrete Mathematical Sciences and Cryptography, 25(1), 15–30. https://doi.org/10.1080/09720529.2020.1754541

Kristiana, A. I., Hidayat, M., Adawiyah, R., Dafik, D., Setiawani, S., & Alfarisi, R. (2022). On Local Irregularity of the Vertex Coloring of the Corona Product of a Tree Graph. Ural Mathematical Journal, 8(2), 94-114. http://dx.doi.org/10.15826/umj.2022.2.008

Kurniawati, E. Y., Agustin, I. H., Dafik, D., & Marsidi. (2021). On the local antimagic labelling of graphs amalgamation. Journal of Physics:Conference Series, 1836(1), 1-12. https://doi.org/10.1088/1742-6596/1836/1/012021

Ming-ju, L. (2013). On super (a,1)-edge antimagic total labellings of subdifitionof stars. Miaoli: Jen-Teh Junior Collage Of Madicine, 1(1), 1–10.

Moussa, M., & Badr, E. (2016). Ladder and subdivision of ladder graphs with pendant edges are odd graceful. International Journal on Applications of Graph Theory in Wireless ad Hoc Networks and Sensor Network. arXiv preprint arXiv:1604.02347, 8(1), 1–8. https://doi.org/10.48550/arXiv.1604.02347

Prihandini, R., & Agustin, I. (2018). The construction of-antimagic graph using smaller edge-antimagic vertex labelling. Journal of Physics: Conference Series, 1008(1), 1-9. https://doi.org/10.1088/1742-6596/1008/1/012039

Prihandini, R., Agustin, I., Alfarisi, R., & Adawiyah, R. (2020). Elegant labelling of some graphs. Journal of Physics: Conference Series, 1538(1), 1-7. https://doi.org/10.1088/1742-6596/1538/1/012018

Prihandini, R., Dafik, Slamin, & Agustin, I. (2018). The antimagicness of super (a, d)− P 2⊵ ̇ H total covering on total comb graphs. AIP Publishing LLC, 2014(1), 1-8. https://doi.org/10.1063/1.5054493

Prihandini, R. M., Agustin, I. H., Albirri, E. R., Adawiyah, R., & Alfarisi, R. (2019). The total edge product cordial labelling of graph with pendant vertex. IOP Conference Series: Earth and Environmental Science, 243(1), 1-11. https://doi.org/10.1088/1755-1315/243/1/012112

Purnapraja, A., Cholidah, F., & Dafik, D. (2014). Super (a, d)-H-Antimagic total selimut pada graf centipede. Prosiding Seminar Matematika Dan Pendidikan Matematika, 1(5), 227–241. https://jurnal.unej.ac.id/index.php/psmp/article/view/974

Purwanto, H., Indriani, G., & Dayanti, E. (2006). Matematika diskrit [Discrete mathematics]. PT. Ercontara Rajawali. https://perpustakaan.uin-antasari.ac.id/opac/index.php?p=show_detail&id=28855

Richard. (2009). Discrete Mathematics. Seventh Edition. Prentice Hall. https://books.google.co.id/books/about/Discrete_Mathematics.html?id=KJwvt2Zz2R8C&redir_esc=y

Rosen, K. (2012). Discrete Mathematics And Its Applications. Seventh Edition. VAGA. https://lic.haui.edu.vn/media/Book_CNTT/Discrete%20athematics.pdf

Published
2023-06-15
How to Cite
Adawiyah, R., Makhfudloh, I. I., & Prihandini, R. M. (2023). Local edge (a, d) –antimagic coloring on sunflower, umbrella graph and its application. Alifmatika: Jurnal Pendidikan Dan Pembelajaran Matematika, 5(1), 70-81. https://doi.org/10.35316/alifmatika.2023.v5i1.70-81
Abstract viewed = 403 times
FULL TEXT PDF downloaded = 317 times