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Abstract: 
In graph theory, understanding the labeling of graphs and hypergraphs provides valuable insights into 
their structural properties and applications. A hypergraph generalizes the notion of a conventional graph, 
defined as a mathematical structure built from a vertex set  and a hyperedge set , where each 

hyperedge is allowed to connect two or more vertices simultaneously. The essential distinction between a 
graph and a hypergraph lies in their edges. While in a graph a single edge connects exactly two vertices, in 
a hypergraph a single hyperedge may connect any number of vertices, including two. A hypergraph H is 
considered to admit a super (a, d) -hyperedge antimagic total labeling, such that the vertex label functions 

f: V(H) → 1, 2, 3, ....., V(H) then f: E(H) → V(H) + 1, ....., V(H) + V(H) and weight w(ei) = ∑ f(ei) + ∑ f(Vi,j), 
where  denotes the number of hyperedges,  represents the number of vertices contained in a hyperedge, 

and  refers to the set of vertices and its associated edges with weight w(ei) for each hyperedge. A super 

(a, d) -hyperedge antimagic total labeling is formulated as a labeling scheme based on arithmetic 
progressions, where 𝑎 serves as the initial value and  denotes the common difference between 

consecutive labels. In this scheme, the total weight of a hyperedge is determined by deriving from the sum 
of the vertex labels and the label of the respective hyperedge. The labels are arranged in an arithmetic 
sequence, ensuring that each hyperedge has a distinct weight. This study focuses on several special classes 
of hypergraphs, namely, the volcano graph, the semi-parachute graph, and the comb product of graphs, to 
implement and examine the characteristics of the super (a, d)-hyperedge antimagic total labeling. By 
focusing on these graph classes, the study contributes to combinatorics by offering a deeper 
understanding of hypergraph labeling schemes and their potential applications in network theory, coding 
theory, and data modeling. 
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Introduction 
Hypergraphs are mathematical structures that generalize the concept of graphs 

(Dasar, 2020). In traditional graphs, the basic elements are vertices and edges, where each 
edge connects exactly two vertices. However, in a hypergraph, a single edge, or so-called 
hyperedge, can connect more than two vertices (Bretto, 2013). The set of vertices in a 
hypergraph H can be denoted as V(H) = {v1. v2. ..... . vm} and the set of hyper edges can be 

denoted as (H) = {e1. e2. ..... . em}. In hypergraph theory, there are two important 
parameters that represent the size and structure of hypergraphs, namely order and size 
(Dasar et al., 2020). The number of vertices in a hypergraph 𝐻 is referred to as its order, 
denoted by ∣ V(H) ∣, whereas the number of hyperedges is referred to as its size, denoted 
by ∣ E(H) ∣ (Tuczy, 2019). Understanding these two characteristics is an important basis 
in analyzing the complexity of hypergraph structures, especially in the implementation of 
labeling theory. 

One of the central areas of study in graph and hypergraph theory is graph labeling, 
which denotes the act of assigning numerical values to vertices, edges, or both, in 
accordance with specified mathematical rules or structural properties (A. Gallian, 2022). 
According to the nature of their mapping domains, both graph labeling and hypergraph 
labeling can be classified into three main categories: vertex labeling, edge labeling, and 
total labeling. (Adawiyah, M. Prihandini, et al., 2023). Vertex labeling maps labels from the 
set of integers to vertices, edge labeling maps labels from the set of integers to edges, 
while total labeling covers both elements simultaneously (Bahmanian & Sajna, 2015). 

Among the various types of labeling studied, antimagic labeling is among the most 
interesting because it emphasizes the uniqueness of the resulting weight (You et al., 
2018). In this type of labeling, each vertex or edge is assigned a label such that the weight 
of an element, defined as the sum of the labels of the vertices connected to a given edge, 
is distinct, ensuring that no two elements share the same weight (Hartsfield & Ringel, 
1990). 

A further extension of antimagic labeling is the total antimagic (a,d)-edge labeling, 
in which the weights of the edges are arranged to generate an arithmetic sequence whose 
initial element is a with successive terms differing 𝑑. (Adawiyah, Makhfudloh, et al., 2023) 
(Adawiyah & M. Prihandini, 2023). The term “super” refers to the additional condition 
that the smallest label must first be assigned to the vertex before being applied to the edge 
(Dafik et al., 2009). Research on this type of labeling has continued to grow in the last 
decade, especially on graph structures such as paths (Saibulla & Pushpam, 2025), cycles 
(Smita, 2021; Series, 2016), stars (Muthuselvi & Devi, 2025; Arumugam & Nalliah, 2012), 
fans (Prihandini & Adawiyah, 2022; Dafik et al., 2016), and wheels (Nadzima & Martini, 
2019; Sumarno et al., 2015). These studies have significantly contributed to our 
understanding of antimagic labeling, particularly in the context of ordinary graphs, by 
providing methods for assigning distinct edge weights from arithmetic sequences. 

However, while these studies advance the theory for standard graph structures, 
there remains a notable gap in the application of total antimagic labeling to hypergraphs. 
The existing literature has yet to explore how the principles established for ordinary 
graphs can be extended to hypergraphs, which have distinct structural properties due to 
their hyperedges. Thus, while research on ordinary graphs has laid a solid foundation, it 
leaves a critical gap in applying these labeling schemes to more complex structures, such 
as hypergraphs, which is the focus of this study. 

As graph studies evolve, the need to extend the concept of labeling to more complex 
structures such as hypergraphs becomes increasingly relevant (Adawiyah, M. Prihandini, 
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et al., 2023). Hypergraphs present new challenges in antimagic labeling due to their 
hyperspace nature, which can involve more than two vertices (Venkatraman et al., 2018). 
It calculates weights and label distributions much more complex than in regular graphs, 
so a special approach is needed to ensure the antimagic property in this context. 

Some early research has marked the importance of labeling on hypergraphs. 
Sonntag (2002) was one of the pioneers who explored the labeling of antimagic points on 
hypergraphs (Sonntag, 2002). Furthermore, Parag and Elgammal (2011) developed a 
guided hypergraph labeling approach in the context of computer vision and pattern 
recognition (Parag & Elgammal, 2011). Javaid (2013) then compiled a comprehensive 
review of various labeling techniques on graphs and hypergraphs (Muhammad, 2013), 
which opens the door to further research on complex structures such as multilevel 
hypergraphs and graph products. 

Recent studies have begun to lead to the application of total labeling of super (a, d) 
hyperedges on various hypergraph structures. Dafik et al. (2024) studied this type of 
labeling specifically on path hypergraphs and triangular ladder hypergraphs. This paper 
aims to explore the total super (a, d)-hyperedge labeling on three particular hypergraph 
structures: the volcano graph, the semi parachute graph, and the comb product of graphs. 
By investigating these structures, we aim to extend the understanding of edge labeling in 
more complex and diverse graph configurations. 

 
Definition 1. (Dafik et al., 2024) Let H = (V, E) represents a simple connected hypergraph. 
The hypergraph H is called super (a, d)-hyperedge antimagic total labeling. A vertex label 
functions f: V(H) → 1, 2, 3, ....., V(H) then f: E(H) → V(H) + 1, ....., V(H) + V(H) and weight w(ei) 

= ∑f(ei) + ∑f(Vi,j), where i denotes the number of hyperedges, j represents the number of 
vertices contained in a hyperedge, and ei refers to the set of vertices and its associated edge 
with weight w(ei) for each hyperedge. 
 

Theorem 1. Dafik et al. (2024), if (p, q) -hypergraph is super (a, d) -hyperedge antimagic total 

labeling, then: 
( ) ( )

1

pG pH pH qG qH qH
d

s

− + −


−
 

For | ( ) |, | ( ) |, | ( ) |, | ( ) |,pG V H qG H pH V H qH H = = = =E E<  and | |is H=  

 
 
Research Methods 

The research employs two methodological approaches: pattern recognition and 
axiomatic deductive. Pattern recognition is utilized to identify and establish regularities 
in the super (a, d)-hyperedge antimagic total labeling of the hypergraphs under 
investigation. This axiomatic, deductive approach, grounded in the principles of 
mathematical logic, is then applied to prove the resulting findings formally. The research 
procedures are carried out in six stages. First, the cardinalities of both the vertex and 
hyperedge sets are determined. Second, a superbound for the difference d is established. 
Third, vertex labels, hyperedge labels, and total labels are assigned. Fourth, the detected 
labeling pattern is tested against the specified bound of 𝑑; if the condition is not satisfied, 
the process is repeated from the preceding step, whereas if it is satisfied, the procedure 
proceeds further. Fifth, functions are constructed for vertex labeling, hyperedge labeling, 
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and total weight. Finally, the sixth stage formulates the theorems and provides rigorous 
proofs.  

 

 
 

Picture 1. Research Flowchart 

 
 
Results and Discussions 

In this work, three theorems are formulated and proved within the framework of 
super (a, d)-hyperedge antimagic total labeling. The detailed statements and proofs are 
provided in relation to the structure associated with the volcano hypergraph (Vn) (𝒱𝑛), 
semi parachute hypergraph (𝒮𝒫𝑛), and comb hypergraph (𝒞ℬ𝑛). We prove that the 
volcano hypergraph (𝒱𝑛) for n ≥ 2, the semi parachute hypergraph (𝒮𝒫𝑛) for n ≥ 3, and the 
and comb hypergraph (𝒞ℬ𝑛) for n ≥ 4 can be assigned an (a, d)-hyperedge antimagic total 
labeling for values of d belonging to the set {0, 1, 2}. 

 
Theorem 2. Volcano  hypergraph Vn with n ≥ 2 has  a  super (a, d)-hyperedge    antimagic 

total labeling where (𝑎, 𝑑) { ( )2 5 5 10 5 1, 0
4

m
mn m n mn m n

 
− + + + − + + 

 
,

( )
1

2 8 8 6 3,1
4

m
mn m n

+ 
+ + − + 

 
 , ( )2 6 6 2 4 7, 2

4

m
mn m n mn m n

 
+ + − + − + + 

 
} 

 
Proof. Let be a volcano hypergraph with vertex set V(Vn) and hyperedge set E(Vn). Its 
vertices are V(Vn) = {x}  {xi; 1 ≤ i ≤ 3}  {yi; 1 ≤ i ≤ n}  {xi,j; 1 ≤ i ≤ 3, 1 ≤ j ≤ m}  {yi,j; 1 ≤ 
i ≤ n, 1 ≤ j ≤ m} and its hyperedges are E(Vn) = {e1,i; 1 ≤ i ≤ 3}  {e2,j; 1 ≤ i ≤ n}. The 
cardinalities of vertices and hyperedges in the volcano hypergraph Vn are |V(Vn)| = (n + 
3)(m + 1) and |E(Vn)| = n + 3. 
 
Case 1,  d = 0 
V8,4 for m is even, m ≥ 2 and n ≥ 2, let a mapping f1 from V(H) → 1, 2, ....., (n + 3)(m + 1) as 
follows: 

( )1 2f x =   

Start 
Identify the Graph for 

Study 

Determine the 

hypergraph Cardinality 

Perform Antimagic 

Edge Labeling 

Check if Each Edge 

Has a Unique Weight 

Test Labeling Results 

with Initial Values (a) 

and Difference (d) 

Create Theorem Proof of Theorem Finish 
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( )1 if x = {
; 1i i =

1 ; 2i i+  =
 

( )1 3 ; 1if y i i n= +     

( )1 ,i jf x ={
( )

7
1; 1 2 ,1 3

2

j
jn i j mod i+ + −    

( )3 4 ; 0 2 ,1 3jn j n i j mod i+ + − +    

 

( )1 ,i jf y ={
( )

7
2 ; 1 2 ,1

2

j
jn i j mod i n+ + +    

( )3 1; 0 2 ,1jn j n i j mod i n+ + − +    

 

( )1 1, 5 1; 1 3if e mn m n i i= − + − −     

( )1 2, 5 4 ; 1if e mn m n i i n= − + − −     

Clearly, the labeling f1 from V(H) → 1, 2, ....., (n + 3)(m + 1) is a bijection. Under the 
specified labeling, each edge’s weight is represented by

1f sets: 

( )
1

1

1,( ) 2 5 5 10 5 1
4

f iW
m

e mn m n mn m n= − + + + − + +  

( )
1 2,

2 ( ) 2 5 5 10 5 1
4

f iW
m

e mn m n mn m n= − + + + − + +  

Total..weight..of..
1

2

1

r

f

r

W
=

= { ( )2 5 5 10 5 1,
4

m
mn m n mn m n− + + + − + +  ,

𝒎

𝟒
(𝟐𝒎𝒏− 𝟓𝒎+

𝟓𝒏 + 𝟏𝟎) 5 1mn m n+ − + + } have the same elements, then hypergraph 
nV  proven 

( )2 5 5 10 5 1, 0
4

m
mn m n mn m n

 
− + + + − + + 

 
-hyperedge antimagic total labeling.  

 

 
 

Picture 2. Super (203,0)-Hyperedge Antimagic Total Labeling on V4,8 

 
Picture 2 illustrates the application of the Super-Hyperedge Antimagic Total 

Labeling on V4,8, where the initial label a is 203, and the common difference d is 0. This 
labeling scheme assigns distinct weights to the hyperedges of the hypergraph so that each 
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hyperedge has a unique total weight. The specific choice of a = 203 and d = 0 ensures that 
the labeling follows a constant value. 
 

Case 2. d = 1 
V8,5 for m is odd, m ≥ 1 and n ≥ 2, let a mapping f2 from V(H) → 1, 2, ....., (n + 3)(m + 1) as 
follows: 

( )2 2f x =  

( )2 if x ={
; 1i i =

1; 2i i+  =
 

( )2 3 ; 1 2if y i i= +     

( )2 ,i jf x ={
( )

7
1; 1 2 ,1 3

2

j
jn i j mod i+ + −    

 ( )3 4 ; 0 2 ,1 3jn j n i j mod i+ + − +    

 

( )2 ,i jf y = {
( )

7
2 ; 1 2 ,1

2

j
jn i j mod i n+ + +    

( )3 1; 0 2 ,1jn j n i j mod i n+ + − +    

 

( )2 1, 4 1; 1 3if e mn m n i i= − + + −     

( )2 2, 4 2 ; 1if e mn m n i i n= − + + +     

Clearly, the labeling f2 from V(H) → 1, 2, ....., (n + 3)(m + 1) is a bijection. Under the 
labeling f2, each edge weight corresponds to the set:  

( )
2

1

1,

1
( ) 2 8 8 6 2

4
f i

m
W e mn m n i

+
= + + − + +  

( )
2

2

2,

1
( ) 2 8 8 6 5

4
f i

m
W e mn m n i

+
= + + − + +  

Total weight 
2

2

1

r

f

r

W
=

= { ( )
1

2 8 8 6 3,
4

m
mn m n

+
+ + − +

1

4

m +
 (2𝑚𝑛 + 8𝑚 + 8𝑛 − 6) + 4,

( )
1

2 8 8 6 5,...
4

m
mn m n

+
+ + − + } has consecutive elements, then hypergraph nV is proven 

( )
1

2 8 8 6 3,1
4

m
mn m n

+ 
+ + − + 

 
-hyperedge antimagic total labeling. 
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Picture 3. Super (270,0)-Hyperedge Antimagic Total Labeling on V5,8 
 

Picture 3  is an illustration of Super-Hyperedge Antimagic Total Labeling, which has 
an a value of 𝑎 is 207 and 𝑑 value of 0. 
 
Case 3. d = 2 
V6,8 for m is even, m ≥ 2 and n ≥ 2, let a mapping f3 from V(H) → 1, 2, ....., (n + 3)(m + 1) as 
follows: 

( )3 2f x =  

( )3 if x = {
( ); 1 2 ,1 1i i mod i   

( )1; 0 2 ,1 2i i mod i+    
 

( )3 3 ; 1 2, , ,if y i i= +     

( )3 ,i jf x =

{
 
 

 
 ( )3 ; 1 2 ,1 3

2

jn n
i j mod i

+
+ +    

( )2 1; 0 2 ,1 3
2

j
jn i j mod i+ − −    

   

( )3 ,i jf y =

{
 
 

 
 ( )6 ; 1 2 ,1

2

jn n
i j mod i n

+
+ +    

( )2 2 ; 0 2 ,1
2

j
jn i j mod i n+ − −    

 

( )3 1, 4 3; 1 3if e mn m n i i= − + + +     

( )3 2, 4 5 ; 1if e mn m n i i n= − + + +     

 
Clearly, the labeling f3 from V(H) → 1, 2, ....., (n + 3)(m + 1) is a bijection. Under the 

labeling f3, each edge weight corresponds to the sets: 

( )
3

1

1,( ) 2 6 6 2 4 2 5
4

f i

m
W e mn m n mn m n i= + + − + − + + +  

( )
2

2

2,( ) 2 6 6 2 4 2 10
4

f i

m
W e mn m n mn m n i= + + − + − + + +  
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Total weight 
3

2

1

r

f

r

W
=

=  { ( )2 6 6 2 4 7,
4

m
mn m n mn m n+ + − + − + +

𝑚

4
(2𝑚𝑛 + 6𝑚 + 6𝑛 − 2) +

𝑚𝑛 −𝑚 + 4𝑛 + 9, ( )2 6 6 2 4 11,
4

m
mn m n mn m n+ + − + − + + } has consecutive elements, then 

hypergraph nV is proven ( )2 6 6 2 4 7, 2
4

m
mn m n mn m n

 
+ + − + − + + 

 
-hyperedge antimagic total 

labeling. 
 

 
 

Picture 4. Super (348,0)-Hyperedge Antimagic Total Labeling on V6,8 
 

Picture 4 illustrates the Super (348,0)-Hyperedge Antimagic Total Labeling applied 
to the hypergraph V6,8, with the initial label a = 348 and the common difference d = 0. 
 
Theorem 3. Semi-parachute hypergraph 𝒮𝒫𝑛 with , ,3n   admits a, super. (𝑎, 𝑑)-

hyperedge antimagic total labeling where ( , )a d 

{ ( )5 2 12 2 3 5 2, 0
4

m
mn m n mn m n

 
− + + + − + + 

 
, ( )

1
5 16 7 3,1

4

m
mn m n

+ 
− + + + 

 
,

( )4 5 15 3 2 4,2
2

m
mn m n mn m n

 
+ + + + − + + 

 
} 

 
Proof. Let be a semi-parachute hypergraph having vertex set 𝑽(𝓢𝓟𝒏) hyperedge set 

𝓔(𝓢𝓟𝒏). The vertex set is defined as (𝓢𝓟𝒏)    . . .; 1 .ix x i n=     { ;1 1iU i n  − }

{ , ;1 ,1i jx i n j m    }  { , ;1 2 1,1i jy i n j m  −   } and the hyperedge set is expressed as 

𝓔(𝓢𝓟𝒏) = {𝒆𝟏,𝒊; 𝟏 ≤ 𝒊 ≤ 𝒏} ∪ {𝒆𝟐,𝒊; {𝟏 ≤ 𝒊 ≤ 𝟐𝒏 − 𝟏}. The, cardinalities of vertices, and, 
hyperedges in the semi parachute hypergraph 𝓢𝓟𝒏 are |𝑽(𝓢𝓟𝒏)| 3 3mn m n= − + +  and 
|𝓔(𝓢𝓟𝒏)| 3 1n= − . 
 
Case 1. d = 0  
𝒮𝒫4,4 for m is even, m ≥ 2 and n ≥ 3, let a mapping f4 from V(H) → {1, 2, ....., 3mn – m + n + 
3} as follows: 
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( )4 1f x =  
( )4 1; 1if x i i n= +     

( )4 3;?1 1
2

i

n
f u i i n= + +   −  

( )4 ,i jf x =

{
 
 

 
 ( )

5 5 1
1; 1 2 ,1

2

jn j n
i j mod i n

+ + +
− −    

( )
5

2 ; 0 2 ,1
2

jn j
i j mod i n

+
+ −    

  

( )4 ,i jf y =

{
 
 

 
 ( )

5 5 1
5 ; 1 2 ,1 2 1

2

jn j n
i j mod i n

+ + +
− −     −  

( )
5

2 ; 0 2 ,1 2 1
2

jn j
i j mod i n

+
+ +     −

 

( )4 1, 3 5 ; 1if e mn m n i i n= − + −                          

( )4 2, 3 4 ; 1 2 1if e mn m n i i n= − + −    −         

Clearly, the labeling f4 from V(H) → {1, 2, ....., 3mn – m + n + 3} is a bijection. Under the 
sprecified labeling, each edge’s weight is represented by f4 sets: 

( )
4

1

1,( ) 5 2 12 2 3 5 2
4

f i

m
W e mn m n mn m n= − + + + − + +

( )
4

2

2,( ) 5 2 12 2 3 5 2
4

f i

m
W e mn m n mn m n= − + + + − + +  

Total weight of 
4

2

1

r

f

r

W
=

= { ( )5 2 12 2 3 5 2, ,
4

m
mn m n mn m n− + + + − + + 

𝒎

𝟒
(𝟓𝒎𝒏 − 𝟐𝒎+

𝟏𝟐𝒏 + 𝟐) + 𝟑𝒎𝒏 −𝒎+ 𝟓𝒏+ 𝟐} have the same elements, then hypergraph 𝓢𝓟𝒏 proven 

( )5 2 12 2 3 5 2, 0
4

m
mn m n mn m n

 
− + + + − + + 

 
-hyperedge antimagic total labeling. 

 

 
 

Picture 5. Super (188,0)-Hyperedge Antimagic Total Labeling on 𝒮𝒫4,4 
 

Picture 5 illustrates the Super (188,0)-Hyperedge Antimagic Total Labeling applied 
to the hypergraph 𝓢𝓟𝟒,𝟒, where the initial label a = 188 and the common difference d = 0. 
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Case 2. d = 1 
𝒮𝒫5,4 for m is even, m ≥ 1 and n ≥ 3, let a mapping f4 from V(H) → {1, 2, ....., 3mn – m + n + 
3} as follows: 

( )5 1f x =  

( )5 1; 1if x i i n= +     

( )5 3 ; 1 1
2

i

n
f u i i n= + +    −  

( )5 ,i jf x =

{
 
 

 
 ( )

5 5 1
1; 1 2 ,1

2

jn j n
i j mod i n

+ + +
− −    

( )
5

2 ; 0 2 ,1
2

jn j
i j mod i n

+
+ −    

  

( )5 ,i jf y =

{
 
 

 
 ( )

5 5 1
5 ; 1 2 ,1 2 1

2

jn j n
i j mod i n

+ + +
− −     −

( )
5

2 ; 0 2 ,1 2 1
2

jn j
i j mod i n

+
+ +     −

 

( )5 1, 3 2 ; 1if e mn m n i i n= − + +     

( )5 2, 3 3 ; 1 2 1if e mn m n i i n= − + +    −  

 
Clearly, the labeling 

5f from ( )V H →  {1,2,...,3 3mn m n− + + } is a bijection. Under the 

labeling 
5f , each edge weight corresponds to the sets: 

( )
5

1

1,

1
( ) 5 16 7 2

4
f i

m
W e mn m n i

+
= − + + + +  

( )
5

2

2,

1
( ) 5 16 7 6

4
if

m
W e mn m n i

+
= − + + + +  

Total weight 
5

2

1

r

f

r

W
=

= { ( ) ( )
1 1

5 16 7 3, 5 16 7 4,
4 4

m m
mn m n mn m n

+ +
− + + + − + + +  

( )
1

5 16 7 5,
4

m
mn m n

+
− + + + } has consecutive elements, then hypergraph 𝒮𝒫𝑛 is proven 

( )
1

5 16 7 3,1
4

m
mn m n

+ 
− + + + 

 
-hyperedge antimagic total labeling. 

 

 
 

Picture 6. Super (252,1)-Hyperedge Antimagic Total Labeling on 𝒮𝒫5,4 
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Picture 6 illustrates the Super (252,1)-Hyperedge Antimagic Total Labeling applied 
to the hypergraph 𝒮𝒫5,4, where the initial label a = 252 and the common difference d = 1. 

 
Case 3. d = 2 
𝒮𝒫6,4 for m is even, m ≥ 2 and n ≥ 3, let a mapping f6 from V(H) → {1, 2, ....., 3mn – m + n + 
3} as follows: 

( )6 1f x =  

( )6 1, 1if x i i n= +     

( )6 3, 1 1
2

i

n
f u i i n= + +    −  

( )6 ,i jf x =

{
 
 

 
 ( )

3 3
4 2 3 ; 1 2 ,1

2

j
jn n i j mod i n

−
− + + +    

( )
3

4 2 ; 1 2 ,1
2

j
jn i j mod i n− − +    

  

( )6 ,i jf y =

{
 
 

 
 ( ) 1,

3 3
4 2 7 ; 1 2 ,1 2, ,

2

j
jn n i j mod i n

−
− + + +     −

( )
3

4 2 ; 1 2 ,1 2 1
2

j
jn i j mod i n− − −     −

 

( )6 1, 3 2 ; 1if e mn m n i i n= − + +     

( )6 2, 3 3 ; 1 2 1if e mn m n i i n= − + +    −  

 
Clearly, the labeling f6 from V(H) → {1, 2, ....., 3mn – m + n + 3} is a bijection. Under the 

specified labeling, each edge’s weight is represented by f6 sets: 

( )
6

1

1,( ) 4 5 15 3 2 2 2
2

f i

m
W e mn m n mn m n i= + + + + − + + +  

( )
6

2

2,( ) 4 5 15 3 3 2 6
2

f i

m
W e mn m n mn m n i= + + + + − + + +  

Total weight 
6

2

1

r

f

r

W
=

= { ( )4 5 15 3 2 4,
2

m
mn m n mn m n+ + + + − + +

𝑚

2
(𝑚𝑛 + 4𝑚 + 5𝑛 + 15) +

3𝑚𝑛 −𝑚 + 2𝑛 + 6,
𝒎

𝟐
(𝑚𝑛 + 4𝑚 + 5𝑛 + 15) + 3𝑚𝑛 −𝑚 + 2𝑛 + 8… }having sequential 

elements, then hypergraph 𝒮𝒫𝑛 is proven ( )4 5 15 3 2 4,2
2

m
mn m n mn m n

 
+ + + + − + + 

 
-

hyperedge antimagic total labeling. 
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Picture 7. Super (327,2)-Hyperedge Antimagic Total Labeling on 𝒮𝒫6,4 

 
Picture 7 illustrates the Super (327,2)-Hyperedge Antimagic Total Labeling applied to 

the hypergraph 𝒮𝒫6,4, with the initial label a = 327 and the common difference d = 2.  
 
Theorem 4. Comb hypergraph 𝒞ℬ𝑛 with n ≥ 4 can be assigned a super (a, d) -hyperedge 

antimagic total labeling where ( ),a d { ( )6 14 6 6 2 3 3, 0
4

m
mn m n mn m n

 
− + − + − + + 

 
,

( )
1

6 13 14 37 3,1
4

m
mn m n

+ 
− + − + 

 
, ( )4 3 3 2 5, 2

2

m
mn m n mn m n

 
+ + + + − + + 

 
} 

 

Proof. Let be a comb hypergraph having verte,x s,et 𝑉(𝒞ℬ𝑛) and hyperedge set ℰ(𝒞ℬ𝑛). 

The vertex set is defined as (𝒞ℬ𝑛) = { ;1
2

i

n
x i  }  { ;1 1

2
i

n
y i  + } 

{ , ;1 ,1i jx i n j m    }  { , ;1 ,1
2

i j

n
y i j m    }  { , ;1 1,1

2
i j

n
z i i m  −   } and ℰ(𝒞ℬ𝑛) =

{
1, ;1ie i n  }  { 2, ;1 ,1

2
i

n
e i i m    } { 3, ;1 1,1

2
i

n
e i i m  −   }, The cardinalities of 

vertices and hyperedges in the comb hypergraph 𝒞ℬ𝑛 are |𝑉(𝒞ℬ𝑛)| 2 1mn m n= − + +  and 
|ℰ(𝒞ℬ𝑛)| 3 2n= − , 
 
Case 1. d = 0 
𝒞ℬ4,6 for m is even, m ≥ 2 and n ≥ 4, let a mapping f7 from V(H) → {1, 2, ....., 2mn – m + n + 
1} as follows:  

( ) ( )7 1; 1 2 ,1
2

i

n
f x i i mod i= +      

( ) ( )7 1; 0 2 ,1 1
2

i

n
f y i i mod i= −     +  

( )7 ,i jf x =

{
 
 

 
 ( )

3 3 3 3
2 1; 1 2 ,1

2

jn j n
i j mod i n

+ + +
− −      

( )
3 3

2 4 ; 0 2 ,1
2

jn j
i j mod i n

+
+ −    
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( )7 ,i jf y =

{
 
 

 
 ( )

3 3 3 3
4 ; 1 2 ,1

2 2

jn j n n
i j mod i

+ + +
−    

( )
3 3

4 5 ; 0 2 ,1
2 2

jn j n
i j mod i

+
+ −    

 

( )7 ,i jf z =

{
 
 

 
 ( )

3 3 3 3
4 2 ; 1 2 ,1 1

2 2

jn j n n
i j mod i

+ + +
− −     −

3 3
4 3 ;

2

jn j
i

+
+ −  𝑗 ≡ 0 (𝑚𝑜𝑑 2), 1 ≤ 𝑖 ≤

𝑛

2
− 1

  

( )7 1, 2 2 ; 1if e mn m n i i n= − + +     

( )7 2, 2 4 1; 1
2

i

n
f e mn m n i i= − + + −     

( ) ,7 3, 2 4 1 ; 1 1, ,
2

,i

n
f e mn m n i i= − + + +    −  

Clearly, the labeling f7 from V(H) → {1, 2, ....., 2mn – m + n + 1} is a bijection. Under the 
specified labeling, each edge’s weight is represented by f7 sets: 

( )
7

1

1,( ) 6 14 6 6 2 3 3
4

f i

m
W e mn m n mn m n= − + − + − + +  

( )
7

2

2,( ) 6 14 6 6 2 3 3
4

f i

m
W e mn m n mn m n= − + − + − + +

( )
7

3

3,( ) 6 14 6 6 2 3 3
4

f i

m
W e mn m n mn m n= − + − + − + +  

Total weight of 
7

3

1

r

f

r

W
=

= { ( )6 14 6 6 2 3 3, ,
4

m
mn m n mn m n− + − + − + + 

𝒎

𝟒
(𝟔𝒎𝒏− 𝟏𝟒𝒎+

𝟔𝒏 − 𝟔) +  𝟐𝒎𝒏 −𝒎+ 𝟑𝒏 + 𝟑} have the same elements, then hypergraph 𝓒𝓑𝒏 proven 

( )6 14 6 6 2 3 3, 0
4

m
mn m n mn m n

 
− + − + − + + 

 
-hyperedge antimagic total labeling.  

 

 
 

Picture 8. Super (183,0)-Hyperedge Antimagic Total Labeling on 𝒞ℬ4,6 
 

Picture 8 illustrates the Super (183,0)-Hyperedge Antimagic Total Labeling applied 
to the hypergraph 𝓒𝓑𝟒,𝟔, where the initial label a = 183 and the common difference d = 0. 
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Case 2. d = 1 
𝐶𝐵5,6 for m is odd, m ≥ 1 and n ≥ 4, let a mapping f8 from V(H) → {1, 2, ....., 2mn – m + n + 
1} as follows: 

( )8 1, 1 ( 2),1
2

i

n
f x i i mod i= +      

( ) ( )8 1, 0 2 ,1 1
2

i

n
f y i i mod i= −     +  

( )8 ,i jf x =

{
 
 

 
 ( )

3 3 3 3
2 1; 1 2 ,1

2

jn j n
i j mod i n

+ + +
− −      

( )
3 3

2 4 ; 0 2 ,1
2

jn j
i j mod i n

+
+ −    

  

( )8 ,i jf y =

{
 
 

 
 ( )

3 3 3 3
4 ; 1 2 ,1

2 2

jn j n n
i j mod i

+ + +
−      

( )
3 3

4 5 ; 0 2 ,1
2 2

jn j n
i j mod i

+
+ −    

 

( )8 ,i jf z =

{
 
 

 
 ( ),

3 3 3 3
4 2 ; 1 2 ,1 1, ,

2 2

jn j n n
i j mod i

+ + +
− −     −  

,

3 3
4 3 ;

2

jn j
i

+
+ −  𝒋 ≡ 𝟎 (𝒎𝒐𝒅 𝟐), 𝟏 ≤ 𝒊 ≤ 𝒏

𝟐
−𝟏

  

( )8 1, 2 2 ; 1if e mn m n i i n= − + +                              

( )8 2, 2 4 1; 1
2

i

n
f e mn m n i i= − + + −                     

( ) , ,8 3, 2 4 1 ; 1
2

, ,i

n
f e mn m n i i= − + + +     

 
Clearly, the labeling f8 from V(H) → {1, 2, ....., 2mn – m + n + 1} is a bijection. Under the 

labeling f8, each edge weight corresponds to the sets: 

( )
8

1

1,

1
( ) 6 13 14 37 2 1

4
f i

m
W e mn m n i

+
= − + − + +  

     ( )
8

2

2,

1
( ) 6 13 14 37 4

4
if

m
W e mn m n i

+
= − + − +  

( )
8

3

3,

1
( ) 6 13 14 37 4 2

4
f i

m
W e mn m n i

+
= − + − + +  

 

Total weight 
8

3

1

r

f

r

W
=

= { ( )
1

6 13 14 37 3,
4

m
mn m n

+
− + − + ( )

1
6 13 14 37 4,

4

m
mn m n

+
− + − +

𝒎+𝟏

𝟒
( )6 13 14 37 5,mn m n− + − + } has consecutive elements, then hypergraph 𝒞ℬ𝑛 is 

proven ( )
1

6 13 14 37 3,1
4

m
mn m n

+ 
− + − + 

 
-hyperedge antimagic total labeling.  
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Picture 9. Super (246,1)-Hyperedge Antimagic Total Labeling on 𝒞ℬ5,6 

 
Picture 9 illustrates the Super (246,1)-Hyperedge Antimagic Total Labeling applied 

to the hypergraph 𝒞ℬ5,6, where the initial label a = 246 and the common difference d = 1. 
 

Case 3. d = 2 
𝒞ℬ6,6 for m is even, m ≥ 2 and n ≥ 2, let a mapping f9 from V(H) → {1, 2, ....., 2mn – m + n + 
1} as follows: 

( )9 1; 1 ( 2),1
2

i

n
f x i for i mod i= +     

( )9 1; 0 ( 2),1 1
2

i

n
f y i for i mod i= −    +  

( )9 ,i jf x ={

( )2 2 4 ; 1 2 ,1jn j i j mod i n− + −    

( )
5

2 2 ; 0 2 ,1
2

jn j
i j mod i n

−
− +    

  

( )9 ,i jf y =

{
 
 

 
 ( )2 4 5 ; 1 2 ,1

2

n
jn j i j mod i− + −    

( )
5

4 3 ; 0 2 ,1
2 2

jn j n
i j mod i

−
− +    

 

( )9 ,i jf z =

{
 
 

 
 ( )2 4 3 ; 1 2 ,1 1

2

n
jn j i j mod i− + −     −

5
4 1;

2

jn j
i

−
− +  𝑗 ≡ 0 (𝑚𝑜𝑑 2), 1 ≤ 𝑖 ≤

𝑛

2
− 1

  

( )9 1, 2 2 ; 1if e mn m n i i n= − + +     

( )9 2, 2 4 1; 1
2

i

n
f e mn m n i i= − + + −     

( )9 3, 2 4 1; 1 1
2

i

n
f e mn m n i for i= − + + +   −  

Clearly, the labeling f9 from V(H) → {1, 2, ....., 2mn – m + n + 1} is a bijection. Under 

the specified labeling, each edge’s weight is represented by f9 sets 
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( )
9

1

1,( ) 4 3 3 2 4 1
2

if

m
W e mn m n mn m n i= + + + + − + + +

( )
9

2

2,( ) 4 3 3 2 8 1
2

if

m
W e mn m n mn m n i= + + + + − + + −

( )
9

3

3,( ) 4 3 3 2 8 4
2

if

m
W e mn m n mn m n i= + + + + − + + +  

 

Total weight 
9

3

1

r

f

r

W
=

= { ( )4 3 3 2 5,
2

m
mn m n mn m n+ + + + − + +

𝒎

𝟐
(𝒎𝒏 + 𝟒𝒎+ 𝟑𝒏 + 𝟑)

2 7mn m n+ − + + ( )4 3 3 2 9,
2

m
mn m n mn m n+ + + + − + + }, Having sequential elements, then 

hypergraph 𝓒𝓑𝒏 is proven ( )4 3 3 2 5, 2
2

m
mn m n mn m n

 
+ + + + − + + 

 
-hyperedge antimagic 

total labeling. 
 

 
 

Picture 10. Super (320,2)-Hyperedge Antimagic Total Labeling on 𝒞ℬ6,6 

 
Picture 10 illustrates the Super (320, 2)-Hyperedge Antimagic Total Labeling on the 
hypergraph 𝒞ℬ6,6 with the initial label a = 320 and common difference d = 2. 
 
 
Conclusions and Suggestions 

In this paper, we have proved three theorems related to the antimagic properties of 
the labeling (a, d)- hyperedge on a hypergraph, with d = 0. 1. 2. This study focuses on three 
types of hypergraphs, namely the volcano hypergraph, semi parachute hypergraph, and 
comb hypergraph. These results address the problem of understanding how the choice of 
label parameters 𝑎 and 𝑑 affects the uniqueness of the total weight assignments in 
different hypergraph structures. As a direction for future research, we suggest that other 
researchers research super (a, d)-hyperedge antimagic total labeling on other 
hypergraphs. 
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