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Abstract: 
This article confronts the persistent challenge of determining the exact perimeter of an ellipse. It proposes 
a high-accuracy geometric approximation centred on a uniquely defined Measuring Right-Angled Triangle 
(MRAT). Constructed with specific spatial and angular properties, the MRAT is positioned at a distance of 
2b/π from the centre of a reference circle and terminates at its circumference at a 45° angle. The ellipse's 
center is co-located with the circle's center. The resulting values were rigorously compared against 
classical Ramanujan approximations, and the PRI test and high-precision graphical analysis were used to 
confirm significant accuracy. This high-accuracy geometric approximation method offers a 
computationally efficient alternative to traditional algebraic methods, enhancing both theoretical 
understanding and applied precision. 
 
Keywords: Conic Sections; Ellipse Perimeter; Geometric Approximation; Ramanujan's Approximations. 

How to Cite: Al-Ossmi, L. H. M. (2025). The high-accuracy geometric approximation of the ellipse's 
perimeter by the measuring right-angled triangle. Alifmatika: Jurnal Pendidikan dan Pembelajaran 
Matematika, 7(2), 310-331. https://doi.org/10.35316/alifmatika.2025.v7i2.310-331 

 
 
Introduction 

An ellipse is a plane curve defined by two principal axes: the central axis and the 
minor axis. The perimeter of an ellipse refers to the total length of the continuous 
boundary enclosing the shape. However, unlike circles or polygons, there is no closed-
form expression for calculating the exact perimeter of an ellipse or any other figure 
among the conic sections using elementary functions. This longstanding mathematical 
problem has captivated scholars for centuries (Giacomoni, Pawan and Sreenadh, 2016; 
X. Yu, 2012). Historically, its origins can be traced to ancient Greek mathematicians such 
as Archimedes and Ptolemy (Al-Ossmi, 2023; Uralde-Guinea et al., 2026), who developed 
early approximation methods. Although these efforts lacked precision, they laid the 
groundwork for future advancements (David Chung and Richard Wolfgramm, 2015).  

In the 17th century, the German astronomer and mathematician Johannes Kepler 
(Abbott, 2009; Ahmedi, 2018; Qureshi, Akhtar, & Ahamad, 2020) introduced a new 
geometric approach by relating elliptical shapes to planetary motion, thereby deepening 
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the theoretical understanding of ellipses. Nevertheless, despite such progress, the 
precise evaluation of an ellipse’s perimeter remained unresolved. Later, in the 18th 
century, mathematicians such as Leonhard Euler (Qureshi, Akhtar, & Ahamad, 2020) 
and Abraham de Moivre (Rohman, 2022) contributed improved approximations through 
infinite series and emerging tools in mathematical analysis. While these methods 
enhanced accuracy, they remained computationally intensive and analytically complex 
(Zhao & Chu, 2022). Subsequently, in the 19th century, mathematicians such as Carl 
Friedrich Gauss (Al-Ossmi, 2022; Asaad, Ahmed, & Ebrahim, 2022) and Bernhard 
Riemann further advanced the field by introducing elliptic integrals, yielding highly 
accurate but algebraically intricate solutions (Wang, Chu, & Chu, 2021). Over time, 
numerous approximation formulas have been proposed to estimate the perimeter of an 
ellipse. These include classical series expansions, Ramanujan’s elegant approximations, 
and expressions derived from integral calculus. In general, three main approximation 
formulas are commonly used, depending on the ellipse’s eccentricity. The first is suitable 
when the semi-axes a and b are nearly equal, approximating a circular shape. In 
contrast, the second and third are employed when there is a substantial difference 
between the two axes (Zhao, Wang, & Chu, 2022). Among these, one of the most 
significant contributions came from the Indian mathematician Srinivasa Ramanujan in 
1923, who introduced formulas that produced remarkably accurate approximations of 
the ellipse's perimeter (Asaad, Ahmed, & Ebrahim, 2022). Ramanujan’s formulas for 
estimating the perimeter of an ellipse gained wide recognition due to their simplicity, 
ease of use, and surprisingly high accuracy compared to more complex methods (Koshy, 
2023; Wang, Chu, & Chu, 2021).  

In recent decades, significant developments have emerged through the work of 
various scholars, including Barnard et al. (2001), Abbott (2009), and, more recently, 
Qureshi et al. (2020) and Al-Ossmi (2023 and 2024). Collectively, these studies reflect 
the ongoing interest in developing more precise, computationally feasible methods for 
evaluating the perimeter of an ellipse. Specifically, in 2023, Al-Ossmi introduced a novel 
geometric approach. This method is based on a high-accuracy geometric approximation 
using a Measuring Right-Angled Triangle (MRAT), which is positioned at a fixed distance 
of 2b/π from the centre of a reference circle (where b is the semi-major 
axis). Furthermore, the triangle terminates at a point on the circle's circumference, 
forming a 45° angle. Central to this construction is a special "Measuring Curve" 
(Appendix A), which determines the intersection point with the ellipse. The distance 
from this point to the ellipse's center defines the radius of a "Measuring Circle." Al-Ossmi 
consequently proved that the circumference of this Measuring Circle provides the exact 
value of the ellipse's perimeter. 

Despite notable advancements in algebraic geometry, a pressing need persists for 
innovative geometric methods that offer greater simplicity and greater precision in 
solving classical problems, such as determining the perimeter of an ellipse. This paper 
addresses this need by further developing Al-Ossmi’s method (2023). Specifically, we 
replace the original Measuring Curve with a straight-line approximation embedded 
within a right-angled triangle. This critical revision leads to a new geometric 
construction from which the exact perimeter of the ellipse can be derived. Notably, the 
proposed method, termed the Measuring Right-Angled Triangle (MRAT), remains valid 
for all variations of the ellipse's semi-major and semi-minor axes. The MRAT framework 
provides a high-accuracy geometric approximation, enabling the determination of the 
elliptical perimeter without reliance on complex algebraic expressions. Consequently, it 
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significantly simplifies the calculation process while maintaining high accuracy. The core 
of this method involves constructing a unique "measurement circle" for each ellipse, 
whose circumference matches the ellipse's actual perimeter. Thus, this work offers a 
practical, geometrically intuitive, and analytically sound alternative to traditional 
perimeter-estimation techniques. 

 
 

Research Methods 

Using specialist mathematical software, the perimeter of an ellipse can be 
calculated to arbitrary precision. The value of various simpler approximations in this 
paper is that a geometric approach has adopted a high-accuracy geometric 
approximation of the Ellipse's Perimeter based on the properties of the elliptic curve, 
aiming to derive a new method intrinsically linked to the elliptic curve’s geometric 
properties.  

This study employs a high-accuracy geometric approximation to further develop 
Al-Ossmi’s method (2023) for determining the exact perimeter of an ellipse. The original 
Measuring Curve, a central component of the previous method, were replaced by a right-
angled triangle configuration. This transformation yields a new geometric structure, the 
Measuring Right-Angled Triangle (MRAT), designed to simplify and improve the 
accuracy of elliptical arc length measurements.  

The research approach is structured around the following steps: 
(1) Geometric Substitution: The curved segment previously used to approximate the 

elliptical arc is replaced by a right-angled triangle, whose dimensions are governed 
by the ellipse’s semi-major and semi-minor axes. This substitution preserves 
geometric fidelity while enabling a simpler analytical framework. 

(2) Construction of MRAT: For each ellipse analyzed, a distinct right-angled triangle is 
constructed such that one of its sides corresponds to the arc segment under 
consideration. This triangle is positioned to geometrically represent the elliptical 
curvature by linear approximation, without resorting to algebraic elliptic integrals. 

(3) Introduction of Measurement Circle: A novel concept introduced in this study is the 
Measurement Circle, a geometric construct uniquely associated with each ellipse. 
The circumference of this circle is defined to equal the exact perimeter of the ellipse, 
serving as a geometric proxy for perimeter estimation. The MRAT construction aids 
in analytically determining the dimensions of this circle. 

(4) Generalization: The method is validated across a range of ellipses with varying semi-
major and semi-minor axes. The robustness of the MRAT approach is confirmed by 
its applicability across a range of axial proportions. 

(5) Comparative Analysis: The results obtained using the MRAT technique are 
compared with Ramanujan’s classical approximations and further confirmed 
through the PRI test and high-precision graphical renderings, demonstrating 
significant accuracy.  

By adopting this method, the study bypasses the need for complex integral calculus 
traditionally used in elliptical geometry, offering a visually intuitive and mathematically 
rigorous alternative. The MRAT framework represents a significant advancement in 
geometric methods for conic section analysis, particularly by simplifying perimeter 
determination while preserving precision (Flowchart 1). 
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Flowchart 1: the geometric workflow for ellipse perimeter approximation via the 
MRAT. 

 
Al-Ossmi’s Ellipse Perimeter Measuring Curve (EPMC) 

Al-Ossmi’s EPMC (2023) introduced a geometric approach grounded in two-
dimensional geometry, utilizing the lengths of the ellipse’s semi-major axis (a) and semi-
minor axis (b) to determine its perimeter. In this method, the center of the ellipse (C) is 
at the origin (0, 0), with the foci aligned along the x-axis and the minor axis along the y-
axis.   As presented in Al-Ossmi’s EPMC, the circumference of the larger, outer circle 
determines the location of the highest point on the Measuring Curve. In contrast, the 
smaller, inner circle defines the endpoint of the curve. Importantly, the radius of the 
inner circle is constant and represents a new geometric parameter introduced in this 
study, termed the Base Circle constant. In contrast, the radius of the outer circle varies 
depending on the length of the central axis of the specific ellipse being studied. It is 
evident that the radius of the Base Circle (denoted as CD1) establishes the minimum 
possible value for the radius of the Measuring Circle (CB = r). This minimum occurs in 
the limiting case where the semi-minor axis is reduced to zero ( ), resulting in a 

degenerate ellipse. Under this condition, the Measuring Circle and the Base Circle 
become identical, sharing the same radius CD1 = π2b. Consequently, the resulting curve 
is no longer elliptical but instead becomes a straight-line segment GH with length 2b 
(Picture 1). Notably, the radius of the Base Circle is a constant and can be expressed as: 
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                                  (1) 

D1H =                                   (2) 

 
Building on these geometrical ratios, Al-Ossmi’s EPMC method consisted of a key 

set of geometry properties related to the ellipse. Accordingly, based on the standard 

definition of an ellipse, Figure 1 illustrates a representative configuration of where 

a and b denote the semi-major and semi-minor axes, respectively.  
 

 
 

Picture 1. Al-Ossmi’s EPMC method consisted of a key set of geometry properties, 

where the Base Circle with radius of , and the Unit Circle with radius of ( ), (see Al-

Ossmi, 2023). 
 

Based on the described construction steps (Picture 1), the Base Circle has a radius 
denoted as shares the same center as the ellipse. According to the geometric 

proportions of the ellipse, three distinct curvature cases can be identified, one of which 
degenerates into a straight line. The EPMC’s method is designed to accommodate all 
these possible cases: an ellipse, a circle, and a line. As the value of the semi-major axis, b, 
varied from zero to b, the resulting curve transitions accordingly from a straight line to 
an ellipse and, eventually, to a circle. Also, Al-Ossmi’s EPMC method (2023) consisted of 
a key set of geometry cases categorized as follows: 
1. When a = 0: The ellipse collapses into a straight-line segment of length . 

2. When a = b: The ellipse becomes a perfect circle with radius b, and its circumference 
is equal to EP/b, where EP denotes the ellipse perimeter in this configuration. 

3. When a < b: The resulting figure remains an ellipse, and its perimeter can be 
approximated by the circumference of the corresponding Measuring Circle, 
expressed as 2πr, where r is the radius determined geometrically through the 
EPMC’s method. 
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This classification demonstrates the EPMC's flexibility in addressing a wide range 
of elliptical forms, from degenerate to circular, by varying the semi-major axis within the 
defined bounds. Focusing on the determination of the radius of the Measuring Circle, 
this radius (r) is pivotal in EPMC’s Method, utilized for the precise computation of the 
perimeter of the ellipse. The Measuring Circle is a unique circle associated with each 
instance of an ellipse, and there is only one Measuring Circle per segment scenario. Its 
circumference equals the perimeter of the ellipse segment that shares the exact center 
point and intersects its perimeter at the same point along the Measuring Curve. In the 
definition of the EPMC, the Measuring Circle is confined within the space defined by the 
Base Circle and the Unit Circle. When it lies on the Base Circle, the result is a straight line 
along the x-axis, whereas if it lies on the Unit Circle, the result is a circle rather than an 
ellipse segment (as illustrated in Picture 2). 
 

 
 

Picture 2. Within the EPMC, the Measuring Circle is geometrically constrained to the 
region bounded by the Base Circle and the Unit Circle, ensuring its radius remains within 

defined limits throughout the construction process. 
 

According to Al-Ossmi (2023), the validity of the EPMC is established through the 
geometric representation of the elliptical segment, projected from the common centre 
shared by the Base Circle and the Unit Circle within the EPMC framework (Picture 2). 
The method introduces several key properties associated with the Measuring Circle:  
(1) Each elliptical segment corresponds to a unique Measuring Circle. 
(2) The Measuring Circle must pass through the center of the ellipse under 

investigation. 
(3) The intersection point between the ellipse and the Measuring Curve defines the 

terminal point of the radius of the Measuring Circle, which shares a common center 
with the ellipse. 

(4) As a result, the Measuring Circle is uniquely associated with the studied elliptical 
segment, and its circumference is equivalent to the exact perimeter of that segment. 

(5) By applying the standard formula for the circumference of a circle, the perimeter of 
the ellipse segment can be calculated algebraically, thereby fulfilling the main 
objective of this research. 
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These geometric properties will be formally demonstrated and validated in the 
Measurement section of the study. Furthermore, the proposed method will be rigorously 
tested across multiple elliptical segments and compared with existing results, 
particularly those derived from Ramanujan’s approximation formulas. According to the 
properties of the EPMC, the Measuring Curve is constructed by first drawing both the 
Unit Circle and the Base Circle, which share a common center point, denoted as C. From 
this central point, a ray is projected at an angle of 45°, intersecting the Unit Circle at 
point A. From point A, a perpendicular segment of length 0.7041b is dropped to 
intersect the x-axis at point D, forming a right-angled isosceles triangle △ABC, where the 
hypotenuse corresponds to the precisely length of the central axis of the ellipse, denoted 
as b (Picture 3).  

It is important to note that this triangle can be symmetrically represented in all 
four quadrants of the Unit Circle due to the geometric symmetry of the construction. 
Within the EPMC framework, the Measuring Curvature, labelled. , is treated as a 

constant geometric feature. It includes three inflexion points (or points of twisting) and 
has a fixed arc length of approximately 0.7102b, as detailed in Tables 1 and 2. Hence, 
two critical geometric properties emerge from the EPMC construction: 
(1) The area enclosed by the Measuring Curve and the two segments C1V1 and D1V1 is 

constant, with a value equal to 0.02390b. 
(2) The area bounded by the Measuring Curve, the segment CC1, and the arc of the Base 

Circle is also constant, with a value equal to 0.06710b. 
 
Also, Picture 3 detailed the key features of a right-angled triangle. (CC1V1), where 

the Measuring Curve is delineated by the Base Circle and the Unit Circle in the definition 
of the EPMC. 
 

 
 

Picture 3. Plot of the key features of a right-angled triangle (CC1V1) where the 
Measuring Curve is delineated by the Base Circle and the Unit Circle in the definition of 

the EPMC (see Appendix A).  
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Table 1. The Measuring Curvature's Properties in EPMC 

 

Description Type Value Code 
(B2H = CV1), if  

the angle (B2CH)  

Line   0.7065b B2H 

b Line b CC1 

Constant Line   0.7645b C1H 

 Line   0.7065b C1V1 

 

Line   0.0711b D1V1 

Constant =   

Line 

 

  0.6366b 
CD1 

Measuring Curvature 
(Constant) 

Curve   0.7102b C1D1 

b Line b CH 

Constant  Line   0.7077b   CV1 

Constant Line   0.2923b V1H 
Constant Angle 45 C1CH 

 

Line  CB 

Where: 
(a) It is the semi-minor axis of the ellipse. 
(b) It is the semi-major axis of the ellipse. 
 (r)  is the radius of the Measuring Circle, BC. 

All detailed figures and quantitative results of all conducted cases are listed in 
Table A, Appendix A. 

 
Table 2. Measuring Curvature's Key Properties in EPMC  

 

Code Measuring Curve Line 
(C1L2) 0.01697449 b 0.01697420 b 
ratio 1.00001708475215326790 
Code Measuring Curve: Line: 
(L1L2) 0.5194 b 0.5193 b 

ratio 1.00019256691700300000 
Code Measuring Curve Line 

(D1L1) 0.1739 b 0.1738 b 
ratio 1.00057537399309551208 
Code Measuring Curve Line 

(D1L1L2C1) 0.71023974 b 0.71005633 b 
ratio 1.0002583034503755497820 

Built from figures 1, 2, and 3. 
Where: 

(a) It is the semi-minor axis of the ellipse. 
(b) It is the semi-major axis of the ellipse. 

        (r)  is the radius of the Measuring Circle, BC. 
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According to the MRAT definition (Al-Ossmi, 2023), the ellipse parameters are 
consistent with the ratio a/b, "the semi- minor/major axis"; hence, they are determined 
by the intersection point of the ellipse with the Measuring Curve.  Also, as seen in 
equations 1 and 2, table 2 shows that if a = 0, then the curvature becomes a straight line 
of length 2b, and the perimeter limit = 4b (classical limit). However, the parameter result 
is if a = b, since the curvature is a circle of radius a, then 𝑃 = 2𝜋𝑎. All these properties are 
taken into account to transform the EPMC and its action into MRAT. 
 
The MRAT Developed Method: 
The Measuring Triangle (MT) 
In this stage, Al-Ossmi’s EPMC is represented by developing the Measuring Right-Angled 
Triangle (MRAT), replacing the Measuring Curve by the Measuring Triangle, since in the 
framework of the EPMC, the Measuring Circle is geometrically constrained within the 

range of  bounded by the Base Circle and the Unit Circle, while the ratio of a/b is 

varied, both key circles' radii remain within defined limits throughout the construction 
process, Fig. 4. 
 
The key point at this stage is that the purpose of adding the Measuring Triangle is that 
this triangle serves to simplify complex curved measurements by: 

• Replacing the nonlinear path of the Measuring Curve (see Appendix A) with a 
geometric approximation that is analytically simpler. 

• Allowing for direct trigonometric calculation using known angles and side ratios. 
• Enabling designers or analysts to convert continuous curvature into a discrete 

geometric form with clearly defined relationships (lengths and angles). 
 

 
 

Picture 4. Plot the MRAT key geometrical proportions of the Measuring Triangle with a 
precise angle of 96 degrees. Where C is the ellipse center, and   , the ellipse semi-

major axis, and then a fixed ratio of  Presents the radius of the Unit Circle (see 

Appendix A).   
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MRAT Geometrical Proportions  
Based on the provided transformation, a description of the algebraic concept and 

geometric properties involving the EPMC and its transformation into MRAT by adding a 
straight line within the Measuring Triangle (MT). In this stage, the EPMC is 
approximated geometrically as a straight line, transforming a previously curved 
measurement path into a linear, analyzable segment. A right-angled triangle represents 
this transformation, termed the MT, in Picture 4 (Appendix A). 
Key Elements of MT can be listed as:  
(1) The right-angled triangle △CDB is the Measuring Triangle. 
(2) Side CD = b is the hypotenuse, which represents the MRAT's linear approximation. 
(3) Then, the angle at point C is 45. 
(4) The angle at point B is labelled as 96, indicating the inclination of the vertical 

projection. 
 All presented ratios were produced according to the right-angled triangle △CDB 

(Picture 4).  From the right-angled triangle △CDB, the horizontal side CB is defined as:  
 

                                                                          (3) 

 
This specific ratio ( ) is produced by the EPMC. At this stage, it is used in MT 

since it suggests substituting arc length with its linear equivalent based on circular 
geometry, where the chord approximates the arc. 

The transformation of the Measuring curve of EPMC into a straight-line 
approximation represented by a right-angled Measuring Triangle △CDB, Picture 4, has 
been used to produce the following components, where:  
(1) The hypotenuse CD = b replaces the EPMC’s measuring curve path.  
(2) The horizontal leg CB = π2b approximates arc length as a chord. 
(3) The vertical segment is a constant, where DB = 0.7106b, it is symmetrically split, 

aiding analysis. 
(4) This stage facilitates further calculation and understanding by translating the 

EPMC’s measuring curve into structured linear geometry. 
These ratios are used in this stage as spatial measurements derived from the 

trigonometry rules of △CDB and as ratios constructed proportionally to the base b, 
implying that the height characterises accumulated effects along the EPMC’s measuring 
curve (e.g., slope, displacement, or other spatial measurements). 
 
 
Results and Discussions 

Practical Examples  
The geometric foundation of the innovative method proposed in this study is 

applied, MRAT. The core idea relies on the geometric ratios obtained from the right-
angled triangle △CDB, which constitutes the fundamental geometric and mathematical 
basis of the approach as a whole. In this section, the variables represent these ratios 
between the Unit Circle and the Base Circle that are linked with the ratio of major and 
minor axes of the ellipse, whose values vary according to the specific configuration of 
the ellipse examined in each case. In this stage, a set of 12 varied ellipses was used to 
test the MRAT method. All cases presented as representative standard examples 
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intended to calculate the ellipse perimeter values produced by this method, tested and 
can be consulted in the study’s appendix )A).  

Since (a) and (b) are the semi-major and semi-minor axes, respectively, applying 
the MRAT method included steps that are listed as follows, Picture 5: 

(1) Let an ellipse whose semi-major axis is b, and a semi-minor axis is a, with a center 
point as C. 

(2) Then, draw the Unit Circle with a radius equal to the length of the major axis of the 
ellipse, b.  

(3) From the center point C of the Unit Circle, draw the Base Circle with a specified 

radius . 

(4) Construct the Measuring Curve according to the geometric specifications defined in 
the EPMC. In MRAT, this involves drawing a ray at a 45º angle from the Unit Circle 
centre, C, to intersect the Unit Circle, then dropping a perpendicular from the 
intersection point to form the necessary right-angled isosceles triangle. 

(5) Finally, plot the ellipse whose perimeter is to be calculated. Ensure that this ellipse 
is aligned with the horizontal diameter of the Unit Circle and shares the same center 
point C as the Unit Circle. 

(6) The intersection point between the ellipse and the BD segment is B1. 
(7) Draw the ray (CB1), which is the radius of the Measuring Circle. 
(8) The circumference of the Measuring Circle gives the exact value of the ellipse 

perimeter. 
By following these steps, we can now achieve the main goal of this paper: visually 

and geometrically determine the necessary parameters for calculating the ellipse's 
perimeter using the EPMC described in this study (Picture 5). 
 
 

 
Picture 5. Visualisation of geometrical elements of the MRAT method, to determine the 

highly accurate value of the ellipse perimeter. 
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In this stage, a set of 12 varied ellipses was used to test the MRAT method. By 
fixing the semi-major axis of the ellipse, b=1, the ellipse semi-miner axis varied from a = 

1.01 to (a = b), hence the Measuring Circle’s radius varied till; . According to 

the MRAT, the circle drawn with a radius of   while the Unit circle is drawn with 

radius b. The obtained calculations are illustrated and listed, see Appendix A.  
In the MRAT, by fixing the value of the semi-minor axis 0 ≥ a ≤ b, then an ellipse is 

randomly nominated with a semi-minor axis, then by the MRAT method definition and 
its MT, the Measuring Circle’s radius is geometrically calculated to give the 
circumference’s value, which is the ellipse’s perimeter, as in Table 3.  Because the MRAT 
is an approximation method built on geometric proportions, comparisons are made 
against a high-precision approximation value for Ramanujan’s approximation method. 
The data in Table 3 present a quantitative comparison between the MRAT method and 
Ramanujan’s approximation method for calculating the perimeter of a set of ellipses. The 
key variables show that the MRAT method demonstrates excellent agreement with the 
well-established Ramanujan’s approximation across the full range of elliptical forms. 
Given its geometric approximation, the MRAT approach provides not only numerical 
accuracy but also a visual and constructible method for perimeter estimation. The small, 
bounded absolute error indicates that EPMC is a reliable and precise alternative to 
algebraic approximations, especially useful in contexts where geometric constructions 
are preferred or required (Table 3). 
 

Table 3. Comparison of MRAT 's results by Ramanujan's method.  
 

a MRAT 's Ramanujan's Absolut Error 
0.000 4b 4b 0.00000000 
0.01 b 4.00102262 b 4.00109915b 0.00007653 
0.1 b 4.06396426 b 4.06397418 b 0.00000992 
0.2 b 4.20213150 b 4.20200891 b -0.00012259 
0.3 b 4.38589970 b 4.38591007 b 0.00001037 
0.4 b 4.60255900 b 4.60262252 b 0.00006352 
0.5 b 4.84419997 b 4.84422411 b 0.00002414 

0.6 b 5.10539996 b 5.10539977 b -0.00000019 
0.7 b 5.38240009 b 5.38236898 b -0.00003111 
0.8 b 5.67229971 b 5.67233358 b 0.00003387 
0.9 b 5.97320000 b 5.97316043 b -0.00003957 

b 6.28318531 b 6.28318531 b 0.00000000 

Where (a) and (b) are the lengths of the semi-major and semi-minor axes, 
respectively. All detailed figures and quantitative results for all conducted 
cases are listed in Appendix A, Table A. 

 
Analysis of Results 

As mentioned previously, the MRAT method is a high-accuracy geometric 
approximation of the Ellipse's Perimeter using a Measuring Right-Angled Triangle. 
Therefore, all obtained results were compared against a high-precision reference value 
for Ramanujan’s approximation for calculating the perimeter of an ellipse (Table 3). 
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Detailed figures and quantitative results for all conducted cases are listed in Appendix A. 
The key variables are:   
(1)  The semi-major axis normalized as a fraction of b (the semi-minor axis), 
(2) MRAT’s Result: ellipse perimeter calculated using the  MT’s proportions, 
(3) Ramanujan’s Results: Ramanujan’s second approximation, 
(4) Absolute Error: the difference between the MRAT −Ramanujan’s.  
 
Accuracy & Agreement: 
a. The MRAT method closely agrees with Ramanujan’s method across the entire 

interval 0 ≤ a ≤ b. 
b. The absolute errors are all tiny, with high approximation on the order of 10-5 to 

, indicating high numerical consistency.  

c. At the endpoints, 𝑎 = 0 and 𝑎 = 𝑏, both methods give identical results (i.e., 4𝑏 and 
2𝜋𝑏 ≈ 6.28318531𝑏), showing that both models reduce correctly to a line or a circle. 

   
Symmetry & Consistency: 
a. The absolute error fluctuates around zero, with both positive and negative values. It 

suggests that: 
b. The variation is random and likely due to rounding and geometric constraints, not 

systematic bias. 
c. Thus, the MRAT method is not consistently overestimating or underestimating. 
    
Trend with ratio a/b: 
a. The maximum absolute error is calculated around 0.0003957b when a = 0.9b, which 

is still extremely small (~0.0066% relative error for a perimeter ≈ 6). 
b. For  and , the error is exactly zero, confirming perfect agreement at the 

endpoints (line and circle cases). 
c. As the value of a increases from 0 to b, both methods predict an increasing 

perimeter, as expected, since the ellipse becomes more circular and its perimeter 
grows.  

 
For additional validation, the PRI test was used at this stage. The Priority Rating 

Index is a numerical scoring method used to rank items, variables, or cases based on 
specific criteria. The PRI test is not a single, universally defined statistical test, but rather 
a set of tests used in many research contexts, especially in engineering, environmental 
studies, and decision analysis. PRI is commonly used as an abbreviation that can be 
easily visualised in charts (bar, radar, comparative plots, etc.). In this paper, the 
efficiency of MRATs by Ramanujan's method was compared using the PRI test to 
visualise the accuracy of these approximating methods, where each variable is assigned 
a score based on predefined criteria. The obtained results are shown in Pictures 6 and 7. 

Results from Picture 6 indicate that both curves follow an almost identical trend, 
confirming the high accuracy of the MRAT’s method. The two methods produce visually 
indistinguishable results across all values of a, indicating excellent numerical agreement. 
Compared with EPMC, the MRAT method effectively replicates Ramanujan’s outcomes 
using a purely geometric construction. Evidence showed that the error remains very 
close to zero across all values of a, reinforcing the high precision of the MRAT method. 
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Picture 6. Comparison of MRAT's efficiency by Ramanujan's method using the PRI test. 

Where a is the semi-major axis (normalized as a fraction of b, the semi-minor axis). 
 

 
 

Picture 7. Plot of Absolute Error compared with MRAT and Ramanujan's method. 
Where a is the semi-major axis (normalized as a fraction of b, the semi-minor axis). 

 
            Also, the Absolute Error values are compared with the MRAT and Ramanujan's 
method. Figure 7 shows that the maximum deviation occurs at a = 0.2b, with an error of 
approximately -0.00012b, which is still extremely small. The errors alternate in sign, 
showing no consistent bias, which supports the claim that MRAT is not systematically 
over- or underestimating the perimeter. Detailed figures and quantitative results for all 
conducted cases are listed in Appendix A.   
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The graphical analysis of the data confirms the accuracy, reliability, and 
consistency of the MRAT method for calculating the perimeter of ellipses. The first plot 
shows near-perfect alignment between the MRAT results and Ramanujan’s established 
approximation for all values of the semi-major axis a, ranging from 0 to b. It suggests 
that the geometric MRAT method effectively captures the actual perimeter values with 
no visible deviation. 

The second plot, illustrating the absolute error, further supports this conclusion. 
The error remains extremely small and well-distributed around zero, with no systematic 
bias toward overestimation or underestimation. The maximum observed error is less 
than 0.00013b, which is negligible in practical applications. Importantly, the error 
converges to zero at the boundary cases: 
a. When a = 0, representing a straight line. 
b. When a = b, representing a circle. 
 

This validates that the MRAT method correctly handles the limiting cases of the 
ellipse and adapts smoothly across the full spectrum of elliptical shapes. The MRAT 
method offers a geometrically grounded, computationally efficient, and highly accurate 
alternative to traditional algebraic approximations, such as Ramanujan’s formulas. Its 
performance, both visual and numerical, establishes it as a robust tool for theoretical 
and applied work in fields that require precise arc-length measurements, such as 
mathematics, engineering, astronomy, and computer graphics.  
 
 
Discussion 

1. High Numerical Consistency Across a/b Ratios:  
The Absolute-Error profile demonstrates that the MRAT method preserves a high 
degree of numerical consistency when compared with Ramanujan’s approximation 
across the full range of . The deviations remain confined to the order of  to 

, indicating that the MRAT geometrical method is stable and insensitive to 

extreme geometric variations in ellipse shape. 
 

2. Localized Error Amplification at Moderate Eccentricities:  
A pronounced negative deviation occurs near a/b ≈ 0.2, suggesting a localized 
sensitivity of the geometric method, MRAT, at moderate eccentricity levels. It 
reflects a region where slight variations in the geometric ratios of the ellipse's MRAT 
induce a slightly higher response. Nonetheless, the magnitude of this deviation 
remains minor and does not affect the overall reliability of the perimeter 
approximation. 

 
3. Geometric Convergence at Specific Axis Ratios:  

The near-zero error recorded at a/b = 0,0.60, and 1.0 indicates apparent geometric 
convergence between the MRAT formulation and Ramanujan’s classical expression. 
This approach utilizes three concentric circles with two fixed radii, b and π2b, where 
a represents the ellipse’s minor axis (aligned with the y-axis), and b the central axis 
(aligned with the x-axis). 

 
4.  Four parameters govern the lengths of the Measuring Circle and the Measuring 

Triangle, which, in turn, measure roughly 0.71019548b. The Measuring Triangle in 
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MRAT encompasses an area defined by its vertical and horizontal projections, a 
constant 0.0239b2. 

 
5. These points coincide with configurations in which the proportional relationships 

embedded in the elliptic-segment framework align particularly well with the 
curvature of the ellipse. 

 
6. Absence of Systematic Overestimation or Underestimation:  

The oscillatory pattern, with alternating positive and negative deviations, confirms 
that the method does not exhibit a systematic bias. The lack of directional drift in 
the error distribution indicates that the MRAT approach neither consistently 
overpredicts nor underpredicts the ellipse perimeter, an essential criterion for 
unbiased approximation methods.  

 
7. Applicability to High-Precision Analytical and Computational Tasks:  

The modified EPMC, MRAT, achieves an exceptional precision of approximately 
2.4015 × 10-7 digits.  Given its consistently low error levels and unbiased behaviour, 
the MRAT method demonstrates strong suitability for high-precision geometric 
modelling, computational analysis, and algorithmic applications. Its robustness 
across disparate  ratios supports its use as a dependable alternative formulation 

in both theoretical and applied mathematical contexts.  
 
 
Conclusion 

This paper presents a high-accuracy geometric approximation of the ellipse's 
perimeter using the Measuring Right-Angled Triangle (MRAT), modifying Al-Ossmi’s 
base method of the Ellipse Perimeter Measuring Curve (EPMC) to determine the 
perimeter of an ellipse accurately. The study introduces a new geometric construction 
for key features of the conic curve, enabling precise perimeter measurements. The 
method identifies four constants and introduces a novel form of special curvature. By 
fixing these constants, the MRAT can compute the exact circumference of ellipses across 
a wide range from flattened to inflated shapes. This research lays the groundwork for 
further investigations, such as exploring new algebraic modules and examining 
projective planes of conics, which may reveal richer geometric configurations. 
Additionally, a deeper study of the MRAT’s higher-order geometric and algebraic 
properties could uncover essential applications in mathematics and physics. Given its 
remarkable accuracy and conceptual simplicity, the MRAT holds promise for diverse 
practical applications in the future. 
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Appendix A 

 
Table A. The Measuring Curve’s coordinators with an accuracy of 8 digits. 

 
y x y x y x 

0.02510111 0.63738109 0.01755083 0.63700109 0 00000000 .  0.63663569 

0.02527245 0.63739109 0.01778667 0.63701109 0.00229474 0.63664109 

0.02544279 0.63740109 0.01801961 0.63702109 0.00394998 0.63665109 

0.02561215 0.63741109 0.01824976 0.63703109 0.00498347 0.63666109 

0.02578057 0.63742109 0.01847725 0.63704109 0.00580513 0.63667109 

0.02594805 0.63743109 0.01870216 0.63705109 0.00650935 0.63668109 

0.02611461 0.63744109 0.01892459 0.63706109 0.00713615 0.63669109 

0.02628028 0.63745109 0.01914462 0.63707109 0.00770695 0.63670109 

0.02644506 0.63746109 0.01936235  0.63708109  0.00823481 0.63671109 

0.02660897 0.63747109 0.01957784 0.63709109 0.00872839 0.63672109 

0.02677204 0.63748109 0.01979118 0.63710109 0.00919378 0.63673109 

0.02693427 0.63749109 0.02000244 0.63711109 0.00963546 0.63674109 

0.02709568 0.63750109 0.02021167 0.63712109 0.01005683 0.63675109 

0.02725629 0.63751109 0.02041895 0.63713109 0.01046056 0.63676109 

0.02741610 0.63752109 0.02062434 0.63714109 0.01084878 0.63677109 

0.02757514 0.63753109 0.02082789 0.63715109 0.01122322 0.63678109 

0.02773342 0.63754109 0.02102965 0.63716109 0.01158530 0.63679109 

0.02789095 0.63755109 0.02122968 0.63717109 0.01193623 0.63680109 

0.02804774 0.63756109 0.02142802 0.63718109 0.01227703 0.63681109 

0.02820380 0.63757109 0.02162473 0.63719109 0.01260858 0.63682109 

0.02835915 0.63758109 0.02181985 0.63720109 0.01293162 0.63683109 

0.02851380 0.63759109 0.02201342 0.63721109 0.01324681 0.63684109 

0.02866775 0.63760109 0.02220548 0.63722109 0.01355473 0.63685109 

0.02882103 0.63761109 0.02239607 0.63723109 0.01385589 0.63686109 

0.02897364 0.63762109 0.02258523 0.63724109 0.01415074 0.63687109 

0.02912559 0.63763109 0.02277300 0.63725109 0.01443969 0.63688109 

0.02927690 0.63764109 0.02295941 0.63726109 0.01472310 0.63689109 

0.02942756 0.63765109 0.02314449 0.63727109 0.01500130 0.63690109 

0.02957760 0.63766109 0.02332827 0.63728109 0.01527459 0.63691109 

0.02972702 0.63767109 0.02351079 0.63729109 0.01554323 0.63692109 

0.02987583 0.63768109 0.02369208 0.63730109 0.01580747 0.63693109 

0.03002404 0.63769109 0.02387216 0.63731109 0.01606754 0.63694109 

0.03017166 0.63770109 0.02405106 0.63732109 0.01632364 0.63695109 

0.03031870 0.63771109 0.02422881 0.63733109 0.01657597 0.63696109 

0.03046516 0.63772109 0.02440543 0.63734109 0.01682469 0.63697109 

0.03061106 0.63773109 0.02475538 0.63736109 0.01706998 0.63698109 

0.03075640 0.63774109 0.02492877 0.63737109 0.01731198 0.63699109 
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Figure A1. Applying the EPMC with an example of an ellipse, with value of  
(a = 0.68570692b), since the intersection point of the ellipse and the Measuring Curve is 

(B), then the Measuring Circle’s radius is (CB = 0.85020428b). 
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Figure A2. Applying the EPMC with an example of an ellipse, with a value of  
(a = 0.13080759b), and the Measuring Circle’s radius is (CB = 0.91759019b). 

 

 
 

Figure A3. Applying the EPMC with an example of an ellipse, with value of  
(a = 0.35552655b), and the Measuring Circle’s radius is (CB = 0.71663728b). 
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Figure A4. Applying the EPMC with an example of an ellipse, with a value of (a = 0), and 

the Measuring Circle’s radius is (CB = b). 
 
 

 
 

Figure A5. Applying the EPMC with an example of an ellipse, with a value of (a = b), and 

the Measuring Circle’s radius is . 

 


