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Abstract:

This paper presents an innovative extension of trigonometric functions to parabolic geometry,
introducing the parabolic sine (sinp u) and parabolic cosine (cosp u) functions. Geometrically, sinp u and
cosp u are defined via the relationship between a point on a parabola and its focus: sinp u represents the
vertical displacement ratio, while cosp u corresponds to the horizontal displacement ratio, normalized by
the focal distance. These functions generalize circular trigonometry to a parabolic framework, preserving
key structural identities while exhibiting unique behaviors, such as fixed asymptotic values under angle
variation. The objective of this study is to establish a rigorous foundation for parabolic trigonometry,
derive its core identities, and demonstrate its applicability. Using a geometric-analytic approach, we
redefine trigonometric concepts via parabola-centric constructions, adapt Euler’s formula to parabolic
segments, and derive exponential representations of sinp u and cosp u. This method leverages differential
geometry and algebraic invariance to ensure consistency with classical trigonometry while extending its
scope. Key results include: (1) Proofs of sinp u, and cosp u; (2) Exponential forms: sinp u, and cosp u; (3)
As the parabolic imaginary unit. Unlike circular trigonometry adaptations, our approach provides intrinsic
geometric consistency with parabolic functions, enabling exact solutions for parabolic arc lengths and
focal properties. This contrasts with numerical or linearized methods that sacrifice accuracy for simplicity.
Theoretically, unifies parabolic geometry with analytic trigonometry, opening pathways for conic-section-
generalized trigonometry, enhancing modeling in optics (parabolic mirrors), structural engineering
(cable-supported arches), and ballistics (trajectory optimization), offering a novel pedagogical tool to
bridge classical and modern geometry.

Keywords: Applied Geometry; Conic sections; Euler’s formula; Geometric identities; Parabolic
trigonometry.
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Introduction

At first glance, trigonometric functions seem tied to circles and hyperbolas. The
key difference between classical trigonometric functions (circle and hyperbolic) is that
classical (circular) trigonometric functions are based on the unit circle x* + y? = 1, where
the circle represents periodic motion (e.g., rotations, oscillations), and these functions
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periodic and describe rotational symmetr y (Al-Ossmi, 2024; Jeffrey & Dai, 2008; Vallo et
al,, 2022), satisfy the Pythagorean identity. Arise naturally in problems involving waves,
circular motion, and oscillations. While Hyperbolic trigonometric functions are based on
the unit hyperbola x? - y* = 1, the hyperbola is related to exponential growth/decay and
non-periodic phenomena. For a "hyperbolic angle"t, the coordinates (x, y)on the
hyperbola, and these satisfy the hyperbolic identity (Dattoli et al., 2011). These functions
are not periodic (grow exponentially), describe hyperbolic symmetry, and they arise in
relativity, catenary curves, and exponential processes (Dattoli et al., 2011; Nielsen et al,,
2017). Hyperbolic trig functions solve problems with exponential growth and Lorentz
transformations (Al-ossmi, 2023; Charkaoui & Alaa, 2022), while circular trig functions
solve problems with rotations and periodicity. Just as circular and hyperbolic functions
correspond to circles and hyperbolas, parabolic functions correspond to parabolas (y* =
X).

While circular and hyperbolic trig functions are well-known, parabolic
trigonometry is a newer and less standardized field. From the classification of second-
order ODEs, Parabolic functions are parabolic degenerate (Chemin, 2005; Dattoli et al,,
2011). This reflects the fact that parabolic symmetry is degenerate (no oscillation or
exponential growth, just linear scaling). In nilpotent geometry (a branch of differential
geometry), parabolic functions describe shear transformations (like x > x +y, y — ),
here the "parabolic angle" t parameterizes shear flow (Dattoli et al., 2011), also, the
functions are polynomial. These appear in control theory and non-Euclidean geometry.
The parabola is the boundary case between ellipses (closed orbits), and hyperbolas,
open trajectories (Kuttler, 2007; Lyachek, 2020; Menzler-Trott, 2007). Also, in matters
of conic sections, there are other properties such that it helps to group the circle and
hyperbola in one, and the parabola and ellipse in the other. In the Euclidean geometry, it
has curvature is K=0, so the parabolic sine and the parabolic cosine would be the
functions which make the similar formulas true in Euclidean geometry. In this case,
there is a "natural”" choice for the circular functions, and a "natural" choice for the
hyperbolic functions. But there is no 'natural’ choice for the ellipse (in fact, a circle is a
kind of ellipse, so the circular functions "are" the 'natural’ case of the elliptical ones). The
hyperbola X% - y2 = 11is parametrized by cosh,and sinh (Cannone, 2005; Nielsen et al,,
2017). If you're willing to go one degree beyond quadratics, nonsingular cubics can be
transformed into elliptic curves, which can be parametrized with Weierstrass -
functions and their first derivatives (Larson et al., 2013; Vodop’yanov & Kudryavtseva,
2019). With no other mission but to parameterize y = x% it could easily take "parabolic
cosine" to be a fairly exotic bijection, not necessarily the identity; then "parabolic sine"
would be the square of that function, not necessarily the square function itself, according
to conic definition, this corresponds to the fact that if you view conic sections as being
given by slicing a cone with a plane, you obtain the parabola in the boundary between
ellipses and hyperbolas.

It is not at all unreasonable to seek "parabolic" fucnctions "not-rectangularly-
hyperbolic" variants of these circular trig functions. In geometry, parabolic
trigonometric functions describes scaling laws fractals, shear flows, and nilpotent
dynamics (Lyachek, 2020; Vodopyanov, 2019). The answer lies in symmetry, differential
equations, and completing the "trigonometric trilogy. In physics, parabolic motion (e.g.,
projectiles) appears when a system is critically damped (neither oscillating nor purely
exponential). In differential equations, parabolic PDEs (e.g., the heat equation) describe
diffusion, unlike wave equations (hyperbolic), or Laplace’s equation elliptic (Cannone,

| Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
2



Laith H. M. Al-Ossmi

2005; Grinshpan, 2010). Thus, parabolic trigonometric functions fill the missing link in
the classification of symmetries. These functions describe shear transformations which
appear in control theory (optimal trajectories) and non-Euclidean geometry (nilpotent
groups), since parabolic curves appear in optimal control (e.g, time-optimal
trajectories), critical damping in engineering (e.g., suspension systems), Models with
memory effects (e.g., fracture mechanics, finance), and time-optimal paths often follow
parabolic scaling laws (Al-ossmi, 2023; Azhary Masta et al, 2018; Novruzi, 2023;
Papageorgiou et al,, 2019). In Mathmatic, a parabola is a curve where any point is at an
equal distance from a fixed point (the focus), and a fixed straight line (the directrix)
(Novruzi, 2023; Faraoni, 2013;Volenec et al, 2021). The vertex (where the parabola
makes its sharpest turn) is halfway between the focus and directrix. The equation for a
parabola is generally; y2 = 4ax, where a is the distance from the origin to the focus, (and
also from the origin to directrix) (Nielsen et al., 2017; Spichal, 2022). The curves can also
be defined using a straight line and a point (called the directrix and focus). The latus
rectum runs parallel to the directrix and passes through the focus. For a parabola
segment whose axis is the x-axis and with vertex at the origin, the equation in which; a >
0 is the distance between the directrix and the focus (Zarco & Pascual-Fuentes, 2023),
the parabolic functions in this paper take a real argument called a parabolic angle (u).

Introducing trigonometric functions based on the parabola provides a powerful
framework for addressing geometric problems that involve parabolic trajectories,
optimization of reflective surfaces, and the analysis of light or sound paths(Grinshpan,
2010). These functions offer alternative ratios and identities suited for parabolic curves,
enriching the mathematician's and engineer's toolbox, especially in fields like physics,
architecture, and astronomy where parabolas frequently occur. There is a lot of
literature concerning equations interacting with a parabolic curvature (Dattoli et al.,
2011; Stewart, 2016). Some specific facts in this field were applied with elementary
knowledge of functional analysis elliptic and parabolic equations have important
application in the field of partial differential equations (Chemin, 2005). parabolic
equations also used in the theory of Sobolev's spaces (Vodopyanov, 2019), and Holder's
spaces (Kuttler, 2007), Minkowski's spaces (Faraoni, 2013), and Young's inequality
(Cannone, 2005), and recently (Sarfraz et al., 2021).

Just as complex numbers unified algebra, parabolic trigonometry may helps
unify geometric symmetries and differential equations. In this case, there have been a
variety of applications to this purpose, however, an exhaustive theory of these kinds of
equations is outside the scope of this paper. In this paper, the parabola trigonometric
functions based on geometrical identities and emerged as an extension of traditional
trigonometry, redefining angle-based relationships according to the geometric
properties of the parabola rather than the circle. In this paper, parabolic functions based
on geometry of unit circle are non-periodic trigonometric functions, but with power-law
behavior (not exponential). Analogous to how sin u and cos u parameterize their
respective curves, parabolic trigonometric functions (sinp u, cosp u, and tanp u)
parameterize the parabola, since they describe parabolic scaling symmetry, they are
designed to be used in problems involving fractional calculus, dynamical systems, and
certain differential equations.

Research Methods

This research is a pure mathematical research based on theory, in this paper, a
geometric approach is adopted to investigate the relationship between trigonometric
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functions based on propertions of the parabolic segment curve (Ammad et al.,, 2022),
aiming to derive new functions intrinsically linked to the parabola’s geometric
properties. The methodology involves positioning the parabola so that its focus
coincides with the origin. We simply generalize the centered unit circle to a conic
segment of parabola with focus at the origin and with "semi-latus rectum" length is
a. From this focal point, a ray is extended to intersect the curve at a variable point P,
which gradually moves along the parabola toward the vertex while completing a full
angular sweep. This movement exhibits periodic behavior, generating cyclic variations
in the ray’s length, which is the template for the generalized "Pythagorean relation" of
these new functions. Building on parabola definitions, the distance between the
parabola’s focus and the directrix (a), which is here a constant, used in all equations to
build all mathematical justifications (Picture 1).

Y

Directrix

Parabola

Picture 1. Plot of the geometric method used in this paper to produce the parabolic
functions, where P(xp, yp) at the parabola segment defined by angle u ranged within; (u <)

Furthermore, the methodology includes calculating the values of the primary
trigonometric functions and their reciprocals at each angle, standardizing the length of
the chord (the ray from the focus to the curve) for consistency. All equations presented
in this paper, from Equation 1 to Equation 78, are derived from the geometric method
illustrated in Figures 1, 2, and 3, as well as these in Appendix A, (Picture A1-A5). These
visual representations are used to describe the geometric proportions underlying the
parabolic functions. Specifically, they illustrate how the coordinates of a point P(xp, yp)
on the parabola relate to the focus and the reference angle u, forming the basis for
defining the parabolic sine and cosine functions. As a result, the derived identities and
expressions consistently reflect the spatial relationships encoded in the geometry of the
parabola, ensuring that each function is grounded in both analytic and visual reasoning.
This method allows for precise determination of the coordinates of the intersection
point P at any given angle of inclination u of the ray PF. Additionally, the new arc
referred to as the Sinocon Arch is constructed with its center at the parabola’s focus,F,
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and a radius equal to twice the fixed distance between the focus and the parabola’s axis
of symmetry (the Directrix), the radius = 2a. The Sinocon Arch serves as a reference for
analyzing the parabolic curve’s dimensions as the point of intersection varies within a
defined angular range (u < m), as it is illustrated in Picture 1.

The target here is to obtain results that clearly reflect the specific relationships and
geometric parameters within the framework of the developed parabolic trigonometric
functions. In particular, the coefficients of the segment from any point (xp, y») on the
parabola to the focus, FP with angle uuu in the integrals, reflect different ratios related

to xp and yp. Consequently, these coefficients indicate how the rate of change of the
integral with respect to uuu is influenced by the parabola’s parameters.

Moreover, the logarithmic terms used in the integrals contain different coefficients
corresponding to xp and yp, respectively. This implies that the contribution of the
logarithmic term to the overall value of the integral is scaled differently for sinp u and
cosp u. Although the argument inside the logarithm remains the same in both integrals,
the coefficients outside the logarithm vary, highlighting the distinct roles of each
parameter. Additionally, both integrals include the constant a, which accounts for the
indefinite nature of integration. Finally,the coefficients are determined by yp, for sinp u,
and by xp, for cosp u, thereby reflecting their respective influences.

Results and Discussions

This study utilized the geometric development model of parabola functions,
which consists of six rtigonomertry functions, where P(xp, yp) on the parabola segment
defined by angle u which is ranged within; (u < m). For any angle u, the ray FP will

intersect the parabola segment at P with projection of x, and yp, while when this ray
intersects the Arch, it determines the parabolic functions, see Picture 2.

Definition of Parabolic Identities

The general idea in this paper is obtaining explicit formulas for a point P(xp, yp)
which is located on the parabola segment consists in Picture 3. Consider a parabola
segment with focus F at the origin point (0, 0), where a is the distance between F and the
vertex of the parabola, hence the standard form has the vertex on the x-axis at the point
(-a, 0), and the parabola directrix the line with equation; x = -g, lies at x-axis from the
vertex of the parabola. Note that value of angle (u) at focus is a parameter of point P(xp,
yp) and then the length of line segment FP.

Let F is the origin, (0,0), and P(xp, yp) is a point at the parabola segment where the
distance from the focus and the vertx is a. Then construct a ray from the parabola focus
and point P, FP with angle u, then the perpendicular from P at the x-axis is FP, at point F

draw FP.

For a parabola segment with the standard form, y? = 4ax (where a is a constant
that determines the distance between the vertex and the focus), from the right angled
triangle AFPD, the distance FP between the focus F and a point P(xp, yp) on the parabola

is given by:
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— 2
P= G- a) + 32, (1)
Then substitute y, = ,/4ax, , into the equation to find PF purely in terms of x and

a. Consequently, the ray length FP can be expressed as:

FP = \,(xp — a)z + 4ax, , (2)

Expanding and simplifying the expression under the square root:
FP = \[x,? —2ax, + a® + 4ax, , (3)
FP = [x,?+2ax, +a?, (4)

This can also be factored to:

FP = (xp + a)z , (5)

In a parabola, the distance from the point to the focus equals the distance from the
point to the directrix. Since FP represents a distance, which is always non-negative:

FP = |x, +4|, (6)

From the point P(xp, yp), draw a perpendicular line that intersects the x-axis at
point D. The triangle Aypx,FP is right-angled, with x, on the x-axis, FP as the hypotenuse,

and yp as the vertical side. From this, we will derive the trigonometric functions which
represents the ratio of the vertical side y, and horizontal side x, to the hypotenuse FP

related the point S along the parabolic segment, thus:
e Parabola sine function (sinp u): This represents the ratio of the vertical side x, to the
hypotenuse FP.

e Cosine Function (cosp u): This represents the ratio of the base yp, to the hypotenuse

FP.

These functions describe the relationship between the coordinates of the point
P(xpyp), on the parabola and the angle u formed at the focus F of the parabola. From the
right-angled triangle (AFPC), we find the two fundamental functions of the parabola;
sinp u and cosp u, which can be derived for any point, P(xp, yp) is a point at the parabola

segment:
sinpu = ﬁ, (7)
p —
X
cospu = ﬁ, (8)
p _—
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Also, Arch Center point is the parabola focus, which lies at the origin point, which is
the point F (0,0), then, the (tanp u) can be defined as a ratio by the tangent (HA) of the

unit circle. Hence the tangent of an angle u is defined as the ratio of the sinp u to the

cosp u of the angle, and then the proportion:
tanp 1 — (3’—*’) , ©
Xp
And from the definition of the tangent function, we can derive:

sinpu )
cospu/’

tanp u = ( (10)

Thus:
t ( iz ) (11)
cotpu=({—|,
Yp
To find the reciprocal of the parabolic sine function (7):
1 %, £ qf

sinpu Yp

Therefore, the reciprocal of the parabolic sine function sinp u is cscp u:

|xp + a|
cscpu= ————, (12)
Yo

Thus the reciprocal of the parabolic cosine function cosp u is secp u:

|x, + a
secpu = ——, (13)
Xp
It is important to note that a standard parabola, y? = 4ax has a distinct relationship
between x, and xp, while |xp + a| doesn't directly describe a parabolic curve but rather a
ratio that depends on the coordinates relative to the focus. These expressions provide
the reciprocal trigonometric functions based on the parabolic coordinates. These
functions are expressed in a normalized form relative to the horizontal distance |xp  a|.
This normalization provides a clear and specific way to relate the coordinates of a point
on the parabola to trigonometric functions. Understanding how the coordinates of a
point on the parabola relate to trigonometric measures.
Also, applying these relationships in contexts where parabolic shapes are used,
such as in optics or structural design. Graphing these functions can visualize how each
function behaves with respect to the coordinates on the parabola, Picture 2.
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Picture 2. Plot of the geometric method to draw the parabolic functions when angle
u is greater than g

When (g >u= n’) , the parabolic functions are:
In this case, when angle u greater than (g) , the ray FP extends to intersect the
Directrix at point H, thus:
FP = FH = secp u, (14)
It is seen from the function proportions in Picture 3 that because the ray FH lies

within the negative part of x-axis, then the value of cosp u and then xp are negative, (see

Table 1). Also, at this range of u, it can lead to obtain another relationship from the right-
angled triangle AHAF, that connect between parabolic functions of secp u and tanp u:

secpu = /tanp?u + 4a? , (15)
And by rewriting the given equation in terms of secp u and sinp u:

secp? u = tanp?u + 4a? (16)
Hence cscpu is the reciprocal of sinpu. To express cscpu using the given
relationship, we use the identity:

secpu

a7)

cscpu = )
tanp u
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Thus, use these identities to express sinp u and cosp u in terms of tanp u and a:

tanp?u + 4a?
cscpu = \/ P , (18)
tanp u

In essence, you've used the given equation to derive expressions for cscp u and
cotp u based on their relationships with tanp u and secp u. These expressions help us
understand how these modified trigonometric functions relate to each other in the
context of specific geometric problem involving the parabola.

Algebraic Values:

For a parabola with (a - 1), the algebraic expressions for the most important
angles are as follows:

(yp)z

The equation simplifies to (yp)z = 4x,, so that; x, = , then this form required

to calculate xp, and yp. based on these trigonometric identities. For each angle u,
computed by the following forms:

ity al = () + O (19
Thus:
sinpu = oL ) (20)
LG+ )’
cospu = T , (21)
1@ +6y)°
Also,
{6+ )’
cscpu = " , (22)
Then:
{6+ )’
secpu = = , (23)
[

Building on the previous results, and from any point P(xp, yp), on the parabola
segment, the values of xp, and yp can be determined according to values of distance of BA

and values of sinp u and cosp u, by formulae :
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Yp = |xp + a|.sinp u, (24)
X, = |xp + a|.cosp u, (25)

Also, at this range of slops, (g >u= n:), this leads to obtain other traigonometrci

relationships from the right-angled triangle A HAF, that:

2a = \/sinpzu + cosp?u, (26)

sinpu = \/4a2 + cosp?u , (27)

And according to the trigonometric ratios, we find the following:

sinpu 2a

Y 5’ (28)
GP = z]?r.zzz ' (29)
Which can be presented by:
TP — 2a.|xp'-_l-a|.sinp u , (30)
sinp u
Thus, length value of line segment is given by:
GP = 2a. |xpia| , (31)
And from the right-angled triangle A HAF, (Picture 3), the length of FP is:
FP=2a-(25) (32)
ﬁ:2a—2a.|xpia|, (33)
and then:
ﬁZZa(l— |xpia|), (34)

Also, where P(xpyp) is a point at the parabolic segment, and a is the distance
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between the parabola focus and the vertex, thus the value of a is remain as a constant.

The Sincon’s Arch

In this paper, a special arch is designed at a quarter circle whose center is the
parabola focus point, F, lies at the origin point, which is the point F (0, 0). The Sinocon’s
Arch is constructed with its center at the parabola’s focus, F, and a radius equal to twice
the fixed distance between the focus and the parabola’s axis of symmetry (the Directrix),
the radius = 2a. The Sinocon’s Arch serves as a reference for analyzing the parabolic
curve’s dimensions as the point of intersection varies within a defined angular range
(u < m), as itis illustrated in Picture 1. In this paper, the given name of Sincon’s Arch is a
mix of sine and cosine words, and it is drawn from the focus point with radius of 2a, the
basic geometric specifications for Sincon’s Arch are outlined in the following Table 1.

Table 1. Key proportions of Sincon’s Arch

Proportions Values
Start Point at y-axis (0,+2a)
End Point at x-axis (-2a,0)
Arch Center point, the Origin point. F=(0,0)
Arch’s radius 2a
Arch length 1.5708a
Shaded area by the arch. 0.785375a

Where (a) is a constant, which is the distance from the parabola’s
focus and the vertex.

There is a fundamental aspect of designing Sincon’s Arch with these specifications,
which are linked with values of sinp u and cosp u. The purpose of designing this arc is
evident in its use as a reference for determining the extension points of both sinp u and
cosp u, which result from the intersection point of the ray with the arc's circumference.
From this intersection point, G, a perpendicular line is drawn to the negative x-axis. The
length of this perpendicular line Gg determines the value of the sinpu, while the

distance between the projection of this line and the horizontal extension to the focus
point, F g, gives the value of the cosp u, where:

AR —RF — _+ _
B=BF=—=a, (35)
FG = MF = FA = 2a, (36)

There is a constant ratio between the area under the parabola curve and the
remaining area occupied by the arc (AGM), which remains consistent regardless of the
curve's condition, as it is illustrated in Picture 4.
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)4

Directrix

Parabola

Picture 4. Plot the proportions of the Sincon’s Arch related to the parabola segment
and Unit crcle at origin point, F, where P(xy, yp), is a point on the parabola segment

Construction Method
In this paper, a geometric method is used based on proprertions of parabola and
the unit circle, to represent these driven six functions associated with the parabolic
segment, (sinp u, cosp u, tanp u, secp u, cscp u, and cotp u), based on the following key
technique:
By drawing a parabola segment such that its focus, F, is positioned at the origin
point, F(0, 0), see Picture 4 .
e From the parabola diffenation, draw the Directrix from point A, parallel to the y-axis
and at a horizontal distance of a from the focus, F.
e Identify a point on the parabola curve, P(xp, yp), and then construct a ray connecting
this point to the focus, FP.

e The vertical projection of the point onto the x-axis, represents the value of y,, while
the horizontal distance from the focus, represents the value of x;.

e Draw an arch (named as Sincon-Arch), whose center is the focus,F, with radius of 2a,
this arch intersects the y-axis at the same point, G, in which the parabola crosses the
y-axis.

After determining the coordinates, reflect the ray FP image at the same angle of

inclination but on the left side of the y-axis, i.e., in the second quadrant. This is a crucial
step to enable the determination of the values of the six trigonometric functions for the
parabola. The intersection point of the reflected ray on the Directrix, H, will determine
the value of tanp u, and the intersection point of the reflected ray on the Sincon-Arch, G,
will determine the value of sinp u. The horizontal distance from the focus to the position
of the vertical projection of the intersection point of the reflected ray with the Sincon-
Arch, will represent the cosp u, where:

e When (O >u< ig) ,the secp u = HF, and cscp u = HF, where(secp u > cscp u ).

e When (g >u=+ :rr) ,the secp u, and cscp u = HF, where (secp u < cscp u).
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According to the innovative geometric method introduced in this paper, after
drawing the ray at a specific angle, the direction of the (FP), ray is reflected as a mirror
image with the same angle of inclination at the negative x-coordinate, extending to
intersect the parabola's Directrix at the extension point H.

y P
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Parabola / ‘
| /S
| / g |
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RS / |
AN cotp u / ‘
N\\ —— M / | Yo
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' AN |
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s o1k
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& .
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2a-cosp u c -Xp "\ )
A g B cospu F

When: G >u=<+4 n),

Picture 4. Plot of the geometric method to draw the parabolic functions related to angle u
values, where P(xp, yp) is a point on the parabola segment (PF), and the distance from the
focus (F) and the vertex (AB = BF) is a constant =a, while the ray FP slops with angle u
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The horizontal distance between the intersection point, (G), of the parabolic curve
with the y-axis, extended to its intersection with the ray FH, represents the reciprocal of

the tanp u value. The key steps for determining the trigonometric ratios specific to the
six functions of the parabola are listed in Table 2, and as shown in Picture 4.

Table 2. Plot the parabolic functions derived by a point P (x,,y,) on the parabola.

Parabolic sinp u cosp u tanp u secp u cscp u cotpu
Line
Segments Gg Fg HA HF NF NM

Where, a is the distance between the focus and the vertex, and u is the angle of the ray FP

Visualizing the Parabolic Functions

It can be observed from figure 8 that for every PF with an angle less than (g)

degrees, there is a corresponding negative angle that shares the same parabolic
functions of sine, cosine, tangent, and their reciprocals. The only difference is by values
of xp and yp because of position of point P related the parabola segment. For example,
when PF lies by u = 562, hence this angle is a corresponding the angle: (2mr — u) =

1242, as they were listed in Tables 3 and 4.

Table 3. The parabolic functions with a = 1, and for angles u ranged from (u < m)

Angle u X, Vo sinp u cosp u tanp u secpu cscpu cotpu
0 o 0.000000 0.000000 a 0.000000 1 o0 0.000000
5 305.8683 24.8189 0.0809 0.9967 0.0808 1.00331 12.3609 12.37623
10 81.2625 13.7386 0.1667 0.9860 0.1691 1.01419 5.99880 5.913660
15 28.1615 7.73930 0.2650 0.9643 0.2748 1.03702 3.77358 3.639010
20 15.6294 5.6740 0.3413 0.9400 0.3630 1.06382 2.92997 2.754820
25 9.9238 4.5712 0.4184 0.9083 0.4606 1.10095 2.39000 2.171081
30 6.3325 3.6974 0.5042 0.8636 0.5838 1.15794 1.98333 1.712915
35 4.5893 3.1883 0.5706 0.8213 0.6947 1.21758 1.75254 1.439470
40 3.2592 2.7329 0.6425 0.7663 0.8385 1.30497 1.55642 1.192605
45 2.4412 2.4140 0.7031 0.7111 0.9888 1.40627 1.42227 1.011326
50 1.7628 2.1203 0.7690 0.6393 1.2028 1.56421 1.30039 0.831393
55 1.3130 19011 0.8228 0.5683 1.4479 1.75963 1.21536 0.690655
60 1.0159 1.7397 0.8636 0.5043 1.7124 1.98294 1.15794 0.583975
65 0.7087 1.5543 0.9099 0.4148 2.1933 2.41080 1.09902 0.455933
70 0.5153 1.4250 0.9404 0.3401 2.7654 2.94031 1.06337 0.361611
75 0.3433 1.2988 0.9668 0.2556 3.7828 3.91236 1.03434 0.264354
80 0.2164 1.1972 0.9841 0.1779 5.5327 5.62113 1.01615 0.180743
85 0.0987 1.0944 0.9960 0.0898 11.0882 11.1358 1.00401 0.090185
89 0.0224 1.0221 0.9998 0.0219 45.6885 45.66210 1.00020 0.021887
90 0.000000 2a 2a 0.000000 o0 o] a 0
95 -0.0759 0.9223 0.9966a -0.0820 12.1514 12.1951 1.00341 0.082295

100 -0.1481 0.8394 0.9848 -0.1738 5.66780 5.75373 1.01543 0.176435
105 -0.2042 0.7691 0.9665 -0.2566 3.76620 3.89711 1.03466 0.265519
110 -0.2558 0.6987 0.9391 -0.3438 2.73170 2.90866 1.06485 0.366072
115 -0.2951 0.6401 0.9081 -0.4187 2.16880 2.38834 1.10120 0.461084
120 -0.3354 0.5739 0.8634 -0.5046 1.71110 1.98176 1.15821 0.584419
125 -0.3617 0.5259 0.8240 -0.5667 1.45400 1.76460 1.21359 0.687758
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Angle u Xp Yp sinp u cosp u tanp u secpu cscp u cotp u
130 -0.3894 0.4701 0.7701 -0.6379 1.20720 1.56764 1.29853 0.828363
135 -0.4122 0.4187 0.7126 -0.7016 1.01560 1.42531 140331 0.984639
140 -0.4332 0.3659 0.6453 -0.7640 0.84470 1.30890 1.54966 1.183852
145 -0.4491 0.3189 0.5789 -0.8154 0.71000 1.22639 1.72741 1.408450
150 -0.4648 0.2665 0.4974 -0.8675 0.57340 1.15273 2.01045 1.743983
155 -0.4754 0.2213 0.4220 -0.9066 0.46540 1.10302 2.36967 2.148689
160 -0.4838 0.1736 0.3377 -0.9412 0.35880 1.06247 2.96120 2.787068
165 -0.4914 0.1308 0.2573 -0.9663 0.26610 1.03487 3.88651 3.757985
170 -0.4968 0.0800 0.1591 -0.9873 0.16110 1.01286 6.28535 6.207324
175 -0.4990 0.0449 0.0896 -0.9960 0.08990 1.00401 11.16071  11.123470
180 -a 0.000000  0.000000 -2a 0.000000 -a 00 o0

Values for x, and y, are rounded to 4 decimal places, and 6 digits for secp u, cscp u, and cotp u.
Parabolic functions are calculated based on the angle u and corresponding x, and y,.

For angles approachingg degrees, the tangent and secant functions approach infinity.

Table 4. The parabolic functions with a = 1, and for angle u ranged from (u < )

Angle u Xp Yp sinp u cospu tanpu secp u cscp u cotpu
5 305.8683 24.8189 0.0809 0.9967 0.0811 1.0033109 12.360939 12.330456
175 -0.49900 0.0449 0.0809 0.9967 0.0811 1.0033109 12.360939 12.330456
10 81.2625 13.7386 0.1667 0.9860 0.1691 1.0141987 5.998800 59136605
170 -0.4964 0.0839 0.1667 0.9860 0.1691 1.0141987 5.998800 59136605
15 28.1615 7.7393 0.2650 0.9643 0.2748 1.0370216 3.7735849 3.6390101
165 -0.4909 0.1349 0.2650 0.9643 0.2748 1.0370216 3.7735849 3.6390101
20 15.6294 5.6740 0.3413 0.9400 0.3630 1.0638297 2.9299736 2.7548209
160 -0.4845 0.1759 0.3413 0.9400 0.3630 1.0638297 2.9299736 2.7548209
25 9.9238 4.5712 0.4184 0.9083 0.4606 1.1009578 2.3900573 2.1710812
155 -0.4760 0.2192 0.4184 0.9083 0.4606 1.1009578 2.3900573 2.1710812
30 6.3325 3.6974 0.5042 0.8636 0.5838 1.1579434 1.9833399 1.7129153
150 -0.4634 0.2706 0.5042 0.8636 0.5838 1.1579434 1.9833399 1.7129153
35 4.5893 3.1883 0.5706 0.8213 0.6947 1.2175818 1.75254118 1.4394702
145 -0.4509 0.3133 0.5706 0.8213 0.6947 1.2175818 1.75254118 1.4394702
40 3.2592 2.7329 0.6425 0.7663 0.8385 1.3049719 1.55642023 1.1926058
140 -0.4338 0.3638 0.6425 0.7663 0.8385 1.3049719 1.55642023 1.1926058
45 2.4412 2.4140 0.7031 0.7111 0.9888 1.4062719 1.42227279 1.0113268
135 -0.4155 0.4109 0.7031 0.7111 0.9888 1.4062719 1.42227279 1.0113268
56 1.2847 1.8890 0.8269 0.5624 1.4705 1.7780938 1.20933607 0.6800401
124 -0.3599 0.5293 0.8269 0.5624 1.4705 1.7780938 1.20933607 0.6800401
60 1.0159 1.7397 0.8636 0.5043 1.7124 1.9829466 1.15794349 0.5839757
120 -0.3352 0.5741 0.8636 0.5043 1.7124 1.9829466 1.15794349 0.5839757
65 0.7087 1.5543 0.9099 0.4148 2.1933 2.4108003 1.09902187 0.4559339
115 -0.2932 0.6431 0.9099 0.4148 2.1933 2.4108003 1.09902187 0.4559339
70 0.5153 1.4250 0.9404 0.3401 2.7654 2.9403116 1.06337728 0.3616113
110 -0.2538 0.7018 0.9404 0.3401 2.7654 2.9403116 1.06337728 0.3616113
80 0.2164 1.1972 0.9841 0.1779 5.5327 5.6211354 1.01615689 0.1807435
100 -0.1510 0.8355 0.9841 0.1779 5.5327 5.6211354 1.01615689 0.1807435
90 0.0000 2a 2a 0.0000 © © a o
180 -a 0.0000 0.00000 -2a 0.00000 -a o o
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Beyond circular trigonometry: Parabolic functions from....

To visualize the Parabolic Functions, we will graph the sine and cosine functions
for a point P(xp, yp), moving along the parabola segment. The angle u will change as xp

changes. Similarly, the parabolic sine function |xyi ol will typically increase as yp
o

increases, and will be inversely proportional to |x, + a|. While Parabolic cosine function

*p

m,will typically increase as xp increases, and will be inversely proportional to
p_

|xp + a|. To graph these parabolic functions, we need to:

1. Calculate functions for various angles.
2. Plot parabolic functions versus angle u.

And by the Desmos, here is the graph of the parabolic sine function sinp u versus

the variable xp, with a fixed value of a = 1. The function is defined as: sinpu = |xyfa| .
13

The graph below shows how the parabolic sine function behaves with respect to
changes in xp. The plot demonstrates the relationship between the input x, and the
corresponding value of s sinp u, see Pictures 5 to 8.

0.5

Picture 5. Graph of the parabolic sine function versus angle by the Desmos.

Similerlly, the graphs of all parabolic functions are plotted below:

15

05

-15

cosp u
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tanp u

Picture 6. Graphs visualize by the Desmos the behaviour of cosp u, tanp u, and cotp u
functions with respect to the variables, u, xp, and yp, where a = 1. The plots also illustrate
how these parabolic functions relate to each other

10
8

6

-210

-210 - =150 -120 -90 -60 -30 ] 30 60 20 120 150 210

-6

-8

-10

secp u

Picture 7. By the Desmos, visualizing the behaviour of csp u, and secp u, parabolic
functions with respect to the variable, u, x, and yp, where a = 1
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14

g

0 30 60 S0 120 1 §0

Picture 8. By the Desmos, visualizing the behaviour of all 6 parabolic functions, to the
variables, u, xp and yp, where a = 1

Integration of Parabolic Functions

Let’s integrate each of these functions with respect to u. Note that these integrals
might not always have straightforward antiderivatives, especially if the functions are
defined in terms of x, and y,, which are functions of u. Here, we’ll perform the
integrations assuming the a is constants and parameters xp and y, are functions of u.

: Yp Yp
du= | ———du=—"+0¢, 37
f sinp u du f I, + a] u e, & al + (37)

Perform Integration using standard techniques or numerical methods if necessary.
Since a is the constant distance between the parabola's focus and its directrix, it plays a
significant role in the equations related to the parabolic functions. The integral must
represent the parabolic function's relation to the geometric configuration of the
parabola. The constant the constant a shift the function, reflecting the geometry of the
parabola. To integrate the parabolic sine-function, sinp u:

Given x,, = |xp + a| .cospu,andy, = |xp + a|. sinp u , these can be written as:
fsinp udu = f¢ du = f Y du, (38)
|x, + qf ||xpia|.cosp uia|
*p *p
cospudu= | ———du= du, (39)
|xpia| ||xpia|.sinp u ia|
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Note that these integrals represent the relationship between the angle u and the
parabolic sine and cosine function, taking into account the geometric properties of the
parabola. To simplify this advanced integral, we need to use some advanced integration
techniques, such as variable substitution or series expansion to analyze complex
functions like sinp u. We start by attempting to analyze the complex function within the

absolute value. Let’s assume:

zZ = |xp + a|.cosp u +a,
So, the integral becomes:

Yp
— du, 40
f |z| (40)

Assume that z can be simplified or changed to a new variable v where:

v =|z[, (41)
This implies:

d
dv = Eﬂxp + a| .cospu + a)du, (42)

If we assume that cosp u can be represented similarly to traditional trigonometric

functions, we can use derivatives of cosp u to calculate dv. If the function cosp u has an
expression that can be expanded as a series, we can use a Taylor series (Chemin, 2005;
Fahim et al., 2021), to approximate the function. For example:

o0

cospu = Z c, u", (43)

n=0

Where c,, are coefficients depending on the properties of the function. We can then

substitute this expression into the integral and analyze it term by term, then evaluate

the integral, we get:
) AV, - f (1) .
J.(_U) T du =y, . dv, (44)

This gives:

ypIn|v| + Gy, (45)
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Substitute the Original Variables:

We substitute v back with the original value, we assumed for z:

ypln||xpia|.cosp u ia| + G5, (46)

Thus, the integral simplifies to:

) )
J.smp u du = rp + al uty, ln||xp + a|.cosp uta| +C, (47)

Where C is the final constant of integration, and thus, the integral of cosp u is:

X
fcosp udu=—"—.u —I—xpln||xpia|.cosp uta| +0C, (48)
|xp + a

To find the integral of cscp u (cosecant) based on the integral of sinpu and its

relationship with cosp u, we typically use the integral formula:

fcscp udu= —In|cscpu+cotpu|+C, (49)

The integral of cscp u can be written as:

sinp u + cosp u
fcscp udu= —In P - P C, (50)
sinp u
Given the specific form of the integral for sinp u:
fsinp udu = P uty, i’.n“xp + a|.cosp utal +C, (51)
|xp + a

To find cscp u, substitute and rearrange:

sinp u + cosp u

sinpu + sinp u
fcscp udu= —In - + C, (52)
sinpu
Simplify to:
escpudu= —1In |esecpu+cotpu|+C, (53)
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Incorporating the specific parameters, the integral might take a form that aligns
with your definitions of x» and y;, and other constants. In the context of cscp u, which is
the cosecant function related to the parabola, the same general formula applies.
Similarly, the integral of secp u would be:

fsecp udu= In|secpu+tanpul|+C, (54)

This result reflects the integral's form, adjusted for the parabolic secant function,
secp u. This simplification heavily depends on the properties of the function cosp u and
whether it can be represented by series or known derivatives. These results reflect the
specific relationships and geometric parameters in the context of parabolic
trigonometric functions. The coefficients of angle u in the integrals reflect different
factors related to xp and yp. These coefficients indicate how the rate of change of the
integral with respect to u is affected by the parameters of the parabola. The logarithmic
terms have different coefficients, to x, and yp, respectively. This suggests that the
contribution of the logarithmic term to the integral's overall value is scaled differently
for sinp u and cosp u. The argument inside the logarithm is the same for both integrals,
but the coefficients outside the logarithm vary. Both integrals include the constant C,
which accounts for the indefinite nature of the integration. The coefficients are
determined by yp for sinp u and x, for cosp u. This reflects the different influence of these
parameters in the context of the integrals. Also, both integrals have a logarithmic term
involving |xp * a| cosp u * a, but with different scaling factors.

The idea of an infinite product expansion for parabolic functions sinp u and cosp u
based on their definitions could be analogous to the infinite product expansions of
standard trigonometric functions. The infinite product expansions for standard
trigonometric functions are based on their zeroes or roots. For parabolic trigonometric
functions, which are defined analogously but relate to a parabola, a similar approach can
be adapted.

Given:
sinpu = yip,
|xp + a|
cospu = ﬁ,

Now, to explore potential infinite product expansions for these functions. Infinite
Product Expansion for sinp u: For standard sine, the infinite product is:

A similar approach could be imagined for sinp u, involving the parameters y, and
|xp £ al. We would express sinp u in a form that captures its dependence on u.

) oo uZ
sinpu = ul_L:l 1-— 22 (55)
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Infinite Product Expansion for cosp u: For the standard cosine, the infinite product
is:

An analogous expansion for cosp u would similarly involve x, and |xp * a|, and
would need to capture the behavior of cosp u as u varies.

_ Hm 1 4 ? 56
cospu = . 2n—1)2n2)’ (56)

Determine the zeros of sinp u and cosp u. These zeros are crucial for building the
product expansion. Propose a general form of the product based on the identified zeros.
For example, for cosp u, and u are the zeros of sinp u, the product might take a form such
as.

2

*© u
sinpu = Kuﬂn=1 (1 — ﬁ), (57)

Now it is needed to determine the constants (like K), to ensure the expansion
converges correctly and represents sinp u and cosp u. Also, compare the resulting
expansions with known infinite product expansions for standard trigonometric
functions to ensure consistency. This approach would lead to a deeper understanding of
parabolic functions in relation to their trigonometric counterparts. However, deriving
exact forms would require specific knowledge of the zeros of sinp u and cosp u, and
possibly involve advanced techniques in infinite product theory.

Determine the Zeros of sinp u and cosp u:

The zeros of the standard sine function are the values of x for which the function
sin(x) = 0. These occur at all integer multiples of m, that is: x = nm. Larson and Edwards
(2013) and Stewart (2016) find that the sine function is defined on the unit circle, where
sin(x) gives the y-coordinate of a point on the circle. Building on the zeros of the
standard sine function, it is occurred at; u = mu, where n is an integer. For sinp u, we need
to find values of u that make sinp u = 0. This implies y, = 0, which corresponds to points
on the parabola where yp, = 0. These points are directly on the x-axis. It needs to express

these points in terms of the variable u.
(2n—-1)m

Similarly, the zeros of the standard cosine function occured at; u = . For

cosp u, we need to find values of u that make cosp u = 0. This also implies x, = 0, which

corresponds to points on the parabola where x, = 0. Once the zeros are identified, the
infinite product expansion can be formulated. The general structure of an infinite
product expansion of parabolic functions, fo sinp u and cosp u, would be:

2

) . u
sinpu = Ku 1-— — |
n=1 Uy

and:
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oo HZ
cosp u:K'u| | 1-— (58)
n=1 Vn

Here, u,, represents the zeros of sinp u (i.e, where y,=0), and K is a normalization

constant that ensures the correct amplitude. And v» nrepresents the zeros of cosp u (i.e.,
where xp = 0), and K’ is another normalization constant.

The constants K and K need to be determined to ensure that the product
expansions correctly represent sinp u and cosp u. This typically involves evaluating the
functions at specific points (e.g., u = 0) and comparing them with the expected values.
We need to simplify the infinite product expressions using known properties of the
parabolic functions, and to identify any patterns or simplifications.

The point P(xp, yp) lies on the parabola segment, and subsequently where y, = 0
corresponds to the x-axis, thus we need to find the conditions under which y, = 0 in
terms of u. For a parabola in its standard form, we get:

¥, = k (x2 — 2ax,), setting; y, = 0, gives:
xp(xp — Za) =0, (59)
So, the zeros of y,, occur at:

xp:(),or X, = 2a,

P

However, to link these values to u, we would need to express x, and yp as
functions of u. Typically, u might represent an angle or another parameter related to the
geometry of the parabola. We also need a specific relationship between u and xp (or yp)
to proceed further.

To proceed further, we need to establish a relationship between the parameter u
and the coordinates xp, and yp of the point P(xp, y») on the parabola. Note that this
relationship could be derived from the geometric definition which are using or a
parametric representation of the parabola segment.

Therefore, the infinite product expansion for the parabolic function of cosp u is:

00 1&2
cospu = K’uﬂ 1-— , 60
P n=1 ((2?1 - Dn )2 (60)
2

To determine K', let's evaluate cosp u at u = 0:

K' = cosp u,
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Since cosp (0) = 1, it follows that:

Thus, the infinite product expansion for cosp u becomes:

2

oo u

cospu = 1-— , 61

P Hn:l ((Zn — D )2 (1)
2

These expansions capture the behavior of the parabolic functions sinp u and cosp u
based on their zeros and the angle u related to the coordinates x, and y, of point P(xp, y»)
on the parabola.

Euler's formula (Stewart, 2016), which traditionally relates the trigonometric
functions sinp u and cosp u to the exponential function, can be extended to the parabolic
functions sinp u and cosp u. For parabolic exponential function, we aim to establish a
similar relationship:

el = sinpu +icospu, (62)

Where g, is a parameter that used to be determined to match the behavior of parabolic
functions, then:

Given the parabolic functions:

Yp

sinpu = ————,
|x +a|
p_

Xp

cospu = m,

Thus, by applying both equations of sinp u and cosp u, we get a special exponential
function of Euler’s:

elovpt = ( 4 +i o ) ) (63)

|xpia| |xpia|

To verify or refine this parabolic identity, let us consider the exponential function
expanded as a Taylor series:

i io u.n
etc.rypu.: E?ZO( Yp ) , (64)

n!
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Expanding separately for real and imaginary parts, we get:

(_ )zn ( )2n+1
gy, U _ v Loyl cvoo Wypt
e PT = Yalo (2n)! +1 2o (2n+1)! (65)
This separates into:
) - (—l)n Zn+i
sinp (o,u) = Yo, %, (66)
Also:
COS ( — Yo M 67
p O-pu‘) - ETL:O (2n)! ’ ( )

Now, we will compare these series expansions with the known forms of sinp u and
cosp u. To achieve the parabolic nature:

(xp)2 + (yp)2

ou = > , (68)
|xp + a|
Thus, Euler's formula for parabolic functions becomes:
[ )P0
I[———u
e |l = (sinpu +icospu), (69)

If we assume a specific normalization, such that op aligns with typical
trigonometric functions, we could set op = 1, giving the adapted Euler's formula for both
parabolic functions is:

iu_ _Yp : p
e eptal +i bopral (70)

e™ =sinpu +icospu, (71)

This formula ties the exponential function directly to the parabolic sine and cosine
functions, with the parameter |x, * a| reflecting the geometry of the parabola in relation
to the point P(xp, yp). This formula relates the exponential function to parabolic analogs
of sine and cosine functions, accounting for the specific geometric properties of the
parabola.

By the exponential function definition, e should vary continuously with x,, which,
as evidenced by the table, clearly changes with respect to the parameter u. In terms of
parabolic trigonometric functions, e based on formulation (71), where the denominator
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approaches zero, this formula needs careful handling, suggesting it might require special
consideration near the vertex or when xp aligns with the focus, Table 4.

Table 4: The e values for angles u from 0 to T degrees

Angle u sinpu Cospu the complex function eiv
0 0.80000 2.00000 0.80000+2.00000i
15 0.25714 1.37143 0.25714+1.37143i
30 0.16000 0.80000 0.16000+0.80000i
45 0.11111 0.55556 0.11111+0.55556i
60 0.07273 0.90909 0.07273+0.90909i
75 0.04667 0.96533 0.04667+0.96533i
90 0.04706 0.94118 0.04706+0.94118i

105 -0.02353 0.99020 -0.02353+0.99020i
120 -0.03478 0.95652 -0.03478+0.95652i
135 -0.02262 0.97000 -0.02262+0.97000i
150 -0.02759 0.96552 -0.02759+0.96552i
165 -0.01657 0.98573 -0.01657=0.98573i
180 -0.02286 0.97143 -0.02286+0.97143i

elt is computed as sinp u + i cosp u, reflecting the complex exponential function.

By exploring a parabolic version of Euler's famous complex formula, but instead of
using ordinary in classical (circular) trigonometry, sin u and cos u, we're using sinp u
and cosp u, which are functions defined relative to a parabola. When we apply this
formula across angles u from 0 to 180¢, table 4 showed that:

e The real part (sinp u) varies, sometimes positive and sometimes slightly negative.

e The imaginary part (i cosp u) stays positive and close to 1, never becoming negative
(even at 180°).

e This behavior is very different from circular trigonometry:

e Incircular e becomes negative for angles beyond u = g

- . . . iy T
e In our parabolic functions, i cosp u remains positive even after u = >

The important point here is that the parabolic "rotation" behaves differently than
circular rotation. Even at 1800, the parabolic cosine is positive. It suggests that motion
along the parabola doesn’t mirror the traditional cycle of sine and cosine (where cosine
flips sign). Also, the complex values stay in a specific quadrant. Since cosp u is always
positive and sinp u is mostly small (sometimes slightly negative), the points et lie mostly
near the positive imaginary axis, but shifted slightly left or right.

Regarding the periodicity, results in table 4 indicated that in the circle, e™ goes full
circle back to 1 when u = 2m. Here, at u = 180° (which is m), the values don't "return”
instead, they stay clustered, showing that the parabolic structure is not truly periodic
like a circle. The reason here is that the imaginary part (cosp u) is much larger than the
real part (sinp u) almost everywhere, (see Picture 1 and 2). Results in table 4 indicated
that the imaginary component dominates, as the real component is small, even negative
sometimes, since no symmetry like in the unit circle . Meaning the "rotation" behavior is
dominated by motion along the imaginary (vertical) axis. This opens the door to a new
type of complex analysis based on parabolic functions rather than circular ones.

This formulation not only reinforces the analogy with Euler's classical identity but
also establishes a novel framework for analyzing waveforms, oscillatory behavior, and
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functional transformations within parabolic geometries. Ultimately, the adapted Euler’s
formula opens new avenues for advancing the theory of parabolic functions, with
promising implications across mathematical physics, signal processing, and the study of
geometric transformations. By integrating exponential expressions with parabolic
trigonometric analogs, this approach provides a robust mathematical paradigm for
characterizing non-circular periodic phenomena inherently linked to parabolic
structures.

Conclusions

In this paper, we derive explicit formulas for the series of segments on the
parabolic segment, where the focus of the parabola is the center of the origin. It has
introduced and explored a novel framework for defining and analyzing trigonometric
functions specific to the geometry of the parabola. By extending the classical concepts of
sine and cosine, we derived the parabolic trigonometric functions sinp u and cosp u,
tailored to the unique properties of a parabolic curve. These expansions capture the
behavior of the parabolic functions sinp u and cosp u based on their zeros and the angle u
related to the coordinates x, and y, of point P(xp, yp) on the parabola. The results
presented reveal a fundamental departure from classical circular behavior when
extending Euler’s formula to parabolic functions. Unlike in circular trigonometry, where
the cosine function changes sign and eiu completes a full rotation back to 1 at u = 2m, the
parabolic cosine remains positive even at u = m, and the complex exponential values e
cluster predominantly near the positive imaginary axis. This behavior reflects a lack of
full periodicity and a dominance of the imaginary component, with the real part
remaining small and sometimes negative. As a result, the parabolic "rotation" does not
mirror the cyclical symmetry of the circle but instead exhibits a distinct, asymmetric
trajectory. These findings emphasize that the parabolic structure introduces a new
mode of complex motion, primarily governed by vertical (imaginary) movement rather
than circular balance between real and imaginary parts. This opens the door to a new
branch of complex analysis, tailored to parabolic geometries rather than circular ones.
By adapting Euler’s classical identity to the parabolic setting, this formulation provides a
powerful new framework for analyzing waveforms, oscillatory behaviors, and geometric
transformations where parabolic shapes are inherent. The integration of exponential
expressions with parabolic trigonometric analogs lays the foundation for broader
applications across mathematical physics, signal processing, and the study of non-
circular periodic phenomena. Thus, this work establishes a robust paradigm for
extending the theory of complex functions into the realm of parabolic structures.

Looking ahead, future research could investigate practical applications of these
parabolic functions in areas such as physics, engineering, and computer graphics fields
in which parabolic forms and trajectories are frequently encountered. Additionally,
extending this analytical framework to encompass other conic sections, such as
hyperbolas and ellipses, presents a promising direction for further theoretical
development and interdisciplinary exploration.
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Picture A1l. The parabolic functions obtained by two ranged angles, (u=1209).
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When (1 = 1209),

Picture A2. The parabolic functions obtained by two ranged angles, (u=1202)

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1

| 30



Laith H. M. Al-Ossmi

T Directrix

tanp u

sinp u

B

U/>

g

cosp u F

Parabola

When (u = 602),
Picture A3. The parabolic functions obtained by two ranged angles, (u=609).
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Picture A4. The parabolic functions obtained by two ranged angles, (u=1509).

When (1 = 1509),
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Picture A5. The parabolic functions obtained by two ranged angles, (u=902).
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Picture A6. All the parabolic functions obtained by ranged angles, (u=+602)
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