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Abstract: 
This paper presents an innovative extension of trigonometric functions to parabolic geometry, 
introducing the parabolic sine (sinp u) and parabolic cosine (cosp u) functions. Geometrically, sinp u and 
cosp u are defined via the relationship between a point on a parabola and its focus: sinp u represents the 
vertical displacement ratio, while cosp u corresponds to the horizontal displacement ratio, normalized by 
the focal distance. These functions generalize circular trigonometry to a parabolic framework, preserving 
key structural identities while exhibiting unique behaviors, such as fixed asymptotic values under angle 
variation. The objective of this study is to establish a rigorous foundation for parabolic trigonometry, 
derive its core identities, and demonstrate its applicability. Using a geometric-analytic approach, we 
redefine trigonometric concepts via parabola-centric constructions, adapt Euler’s formula to parabolic 
segments, and derive exponential representations of sinp u and cosp u. This method leverages differential 
geometry and algebraic invariance to ensure consistency with classical trigonometry while extending its 
scope. Key results include: (1) Proofs of sinp u, and cosp u; (2) Exponential forms: sinp u, and cosp u; (3) 
As the parabolic imaginary unit. Unlike circular trigonometry adaptations, our approach provides intrinsic 
geometric consistency with parabolic functions, enabling exact solutions for parabolic arc lengths and 
focal properties. This contrasts with numerical or linearized methods that sacrifice accuracy for simplicity. 
Theoretically, unifies parabolic geometry with analytic trigonometry, opening pathways for conic-section-
generalized trigonometry, enhancing modeling in optics (parabolic mirrors), structural engineering 
(cable-supported arches), and ballistics (trajectory optimization), offering a novel pedagogical tool to 
bridge classical and modern geometry.  
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trigonometry. 
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Introduction 

At first glance, trigonometric functions seem tied to circles and hyperbolas. The 
key difference between classical trigonometric functions (circle and hyperbolic) is that 
classical (circular) trigonometric functions are based on the unit circle x² + y² = 1, where 
the circle represents periodic motion (e.g., rotations, oscillations), and these functions 
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periodic and describe rotational symmetr y (Al-Ossmi, 2024; Jeffrey & Dai, 2008; Vallo et 
al., 2022), satisfy the Pythagorean identity. Arise naturally in problems involving waves, 
circular motion, and oscillations. While Hyperbolic trigonometric functions are based on 
the unit hyperbola x² - y² = 1, the hyperbola is related to exponential growth/decay and 
non-periodic phenomena. For a "hyperbolic angle" t, the coordinates (x, y) on the 
hyperbola, and these satisfy the hyperbolic identity (Dattoli et al., 2011). These functions 
are not periodic (grow exponentially), describe hyperbolic symmetry, and they arise in 
relativity, catenary curves, and exponential processes (Dattoli et al., 2011; Nielsen et al., 
2017). Hyperbolic trig functions solve problems with exponential growth and Lorentz 
transformations (Al-ossmi, 2023; Charkaoui & Alaa, 2022), while circular trig functions 
solve problems with rotations and periodicity.  Just as circular and hyperbolic functions 
correspond to circles and hyperbolas, parabolic functions correspond to parabolas (y² = 
x). 

While circular and hyperbolic trig functions are well-known, parabolic 
trigonometry is a newer and less standardized field. From the classification of second-
order ODEs, Parabolic functions are parabolic degenerate (Chemin, 2005; Dattoli et al., 
2011). This reflects the fact that parabolic symmetry is degenerate (no oscillation or 
exponential growth, just linear scaling). In nilpotent geometry (a branch of differential 
geometry), parabolic functions describe shear transformations (like x → x + y, y → y), 
here the "parabolic angle" t parameterizes shear flow (Dattoli et al., 2011), also, the 
functions are polynomial. These appear in control theory and non-Euclidean geometry. 
The parabola is the boundary case between ellipses (closed orbits), and hyperbolas, 
open trajectories (Kuttler, 2007; Lyachek, 2020; Menzler-Trott, 2007). Also, in matters 
of conic sections, there are other properties such that it helps to group the circle and 
hyperbola in one, and the parabola and ellipse in the other. In the Euclidean geometry, it 
has curvature is K=0, so the parabolic sine and the parabolic cosine would be the 
functions which make the similar formulas true in Euclidean geometry. In this case, 
there is a "natural" choice for the circular functions, and a "natural" choice for the 
hyperbolic functions. But there is no 'natural' choice for the ellipse (in fact, a circle is a 
kind of ellipse, so the circular functions "are" the 'natural' case of the elliptical ones). The 
hyperbola x² - y² = 1 is parametrized by cosh,and sinh (Cannone, 2005; Nielsen et al., 
2017). If you're willing to go one degree beyond quadratics, nonsingular cubics can be 
transformed into elliptic curves, which can be parametrized with Weierstrass ℘-
functions and their first derivatives (Larson et al., 2013; Vodop’yanov & Kudryavtseva, 
2019). With no other mission but to parameterize y = x², it could easily take "parabolic 
cosine" to be a fairly exotic bijection, not necessarily the identity; then "parabolic sine" 
would be the square of that function, not necessarily the square function itself, according 
to conic definition, this corresponds to the fact that if you view conic sections as being 
given by slicing a cone with a plane, you obtain the parabola in the boundary between 
ellipses and hyperbolas.   

It is not at all unreasonable to seek "parabolic" fucnctions "not-rectangularly-
hyperbolic" variants of these circular trig functions. In geometry, parabolic 
trigonometric functions describes scaling laws fractals, shear flows, and nilpotent 
dynamics (Lyachek, 2020; Vodopyanov, 2019). The answer lies in symmetry, differential 
equations, and completing the "trigonometric trilogy. In physics, parabolic motion (e.g., 
projectiles) appears when a system is critically damped (neither oscillating nor purely 
exponential). In differential equations, parabolic PDEs (e.g., the heat equation) describe 
diffusion, unlike wave equations (hyperbolic), or Laplace’s equation elliptic (Cannone, 
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2005; Grinshpan, 2010). Thus, parabolic trigonometric functions fill the missing link in 
the classification of symmetries. These functions describe shear transformations which 
appear in control theory (optimal trajectories) and non-Euclidean geometry (nilpotent 
groups), since parabolic curves appear in optimal control (e.g., time-optimal 
trajectories), critical damping in engineering (e.g., suspension systems), Models with 
memory effects (e.g., fracture mechanics, finance), and time-optimal paths often follow 
parabolic scaling laws (Al-ossmi, 2023; Azhary Masta et al., 2018; Novruzi, 2023; 
Papageorgiou et al., 2019). In Mathmatic , a parabola is a curve where any point is at an 
equal distance from a fixed point (the focus), and a fixed straight line (the directrix) 
(Novruzi, 2023; Faraoni, 2013;Volenec et  al.,  2021). The vertex (where the parabola 
makes its sharpest turn) is halfway between the focus and directrix. The equation for a 
parabola is generally; y2 = 4ax,  where a is the distance from the origin to the focus, (and 
also from the origin to directrix) (Nielsen et al., 2017; Spíchal, 2022). The curves can also 
be defined using a straight line and a point (called the directrix and focus). The latus 
rectum runs parallel to the directrix and passes through the focus. For a parabola 
segment whose axis is the x-axis and with vertex at the origin, the equation in which; a > 
0 is the distance between the directrix and the focus (Zarco & Pascual-Fuentes, 2023), 
the parabolic functions in this paper take a real argument called a parabolic angle (u).  

Introducing trigonometric functions based on the parabola provides a powerful 
framework for addressing geometric problems that involve parabolic trajectories, 
optimization of reflective surfaces, and the analysis of light or sound paths(Grinshpan, 
2010). These functions offer alternative ratios and identities suited for parabolic curves, 
enriching the mathematician's and engineer's toolbox, especially in fields like physics, 
architecture, and astronomy where parabolas frequently occur.  There is a lot of 
literature concerning equations interacting with a parabolic curvature (Dattoli et al., 
2011; Stewart, 2016). Some specific facts in this field were applied with elementary 
knowledge of functional analysis elliptic and parabolic equations have important 
application in the field of partial differential equations (Chemin, 2005). parabolic 
equations also used in the theory of Sobolev's spaces (Vodopyanov, 2019), and Holder's 
spaces (Kuttler, 2007), Minkowski's spaces (Faraoni, 2013), and Young's inequality 
(Cannone, 2005), and recently (Sarfraz et al., 2021).  

Just as complex numbers unified algebra, parabolic trigonometry may helps 
unify geometric symmetries and differential equations. In this case, there have been a 
variety of applications to this purpose, however, an exhaustive theory of these kinds of 
equations is outside the scope of this paper. In this paper, the parabola trigonometric 
functions based on geometrical identities  and emerged as an extension of traditional 
trigonometry, redefining angle-based relationships according to the geometric 
properties of the parabola rather than the circle. In this paper, parabolic functions based 
on geometry of unit circle are non-periodic trigonometric functions, but with power-law 
behavior (not exponential). Analogous to how sin u and cos u parameterize their 
respective curves, parabolic trigonometric functions (sinp u, cosp u, and tanp u) 
parameterize the parabola, since they describe parabolic scaling symmetry, they are 
designed to be used in problems involving fractional calculus, dynamical systems, and 
certain differential equations. 

 
Research Methods 

This research is a pure mathematical research based on theory, in this paper, a 
geometric approach is adopted to investigate the relationship between trigonometric 
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functions based on propertions of the parabolic segment curve (Ammad et al., 2022), 
aiming to derive new functions intrinsically linked to the parabola’s geometric 
properties. The methodology involves positioning the parabola so that its focus 
coincides with the origin. We simply generalize the centered unit circle to a conic 
segment of parabola with focus at the origin and with "semi-latus rectum" length is 
a. From this focal point, a ray is extended to intersect the curve at a variable point P, 
which gradually moves along the parabola toward the vertex while completing a full 
angular sweep. This movement exhibits periodic behavior, generating cyclic variations 
in the ray’s length, which is the template for the generalized "Pythagorean relation" of 
these new functions. Building on parabola definitions, the distance between the 
parabola’s focus and the directrix (a), which is here a constant, used in all equations to 
build all mathematical justifications (Picture 1). 

 

 
 

Picture 1. Plot of the geometric method used in this paper to produce the parabolic 
functions, where P(xp,  yp) at the parabola segment defined by angle u ranged within; (u ≤ π) 

 
Furthermore, the methodology includes calculating the values of the primary 

trigonometric functions and their reciprocals at each angle, standardizing the length of 
the chord (the ray from the focus to the curve) for consistency. All equations presented 
in this paper, from Equation 1 to Equation 78, are derived from the geometric method 
illustrated in Figures 1, 2, and 3, as well as these in Appendix A, (Picture A1–A5). These 
visual representations are used to describe the geometric proportions underlying the 
parabolic functions. Specifically, they illustrate how the coordinates of a point P(xp, yp) 
on the parabola relate to the focus and the reference angle u, forming the basis for 
defining the parabolic sine and cosine functions. As a result, the derived identities and 
expressions consistently reflect the spatial relationships encoded in the geometry of the 
parabola, ensuring that each function is grounded in both analytic and visual reasoning. 
This method allows for precise determination of the coordinates of the intersection 
point P at any given angle of inclination u of the ray PF. Additionally, the new arc 
referred to as the Sinocon Arch is constructed with its center at the parabola’s focus,F, 
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and a radius equal to twice the fixed distance between the focus and the parabola’s axis 
of symmetry (the Directrix), the radius = 2a. The Sinocon Arch serves as a reference for 
analyzing the parabolic curve’s dimensions as the point of intersection varies within a 
defined angular range (u ≤ π), as it is illustrated in Picture 1. 

The target here is to obtain results that clearly reflect the specific relationships and 
geometric parameters within the framework of the developed parabolic trigonometric 
functions. In particular, the coefficients of the segment from any point (xp, yp)  on the 
parabola to the focus, 

 
 with angle uuu in the integrals, reflect different ratios related 

to xp and yp. Consequently, these coefficients indicate how the rate of change of the 
integral with respect to uuu is influenced by the parabola’s parameters. 

Moreover, the logarithmic terms used in the integrals contain different coefficients 
corresponding to xp and yp, respectively. This implies that the contribution of the 
logarithmic term to the overall value of the integral is scaled differently for sinp u and 
cosp u. Although the argument inside the logarithm remains the same in both integrals, 
the coefficients outside the logarithm vary, highlighting the distinct roles of each 
parameter. Additionally, both integrals include the constant a, which accounts for the 
indefinite nature of integration. Finally,the coefficients are determined by yp, for sinp u, 
and by xp, for cosp u, thereby reflecting their respective influences. 
 
 
Results and Discussions 

This  study  utilized  the  geometric  development  model of parabola functions,  
which  consists  of six rtigonomertry functions, where P(xp,  yp) on the parabola segment 
defined by angle u which is ranged within; (u ≤ π). For any angle u, the ray  will 

intersect the parabola segment at P with projection of xp and yp, while when this ray 
intersects the Arch, it determines the parabolic functions, see Picture 2. 
 
Definition of Parabolic Identities 

The general idea in this paper is obtaining explicit formulas for a point P(xp,  yp) 
which is located on the parabola segment consists in Picture 3. Consider a parabola 
segment with focus F at the origin point (0, 0), where a is the distance between F and the 
vertex of the parabola, hence the standard form has the vertex on the x-axis at the point 
(-a, 0), and the parabola directrix the line with equation; x = -a, lies at x-axis from the 
vertex of the parabola. Note that value of angle (u) at focus is a parameter of point P(xp,  
yp) and then the length of line segment . 

Let F is the origin, (0,0), and P(xp,  yp) is a point at the parabola segment where the 
distance from the focus and the vertx is a. Then construct a ray from the parabola focus 
and point P,   with angle u, then the perpendicular from P at the x-axis is , at point F 

draw .  

For a parabola segment with the standard form, y2 = 4ax (where a is a constant 
that determines the distance between the vertex and the focus), from the right angled 
triangle ∆FPD, the distance  between the focus F and a point P(xp,  yp) on the parabola 

is given by:   
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                                                 (1) 

Then substitute  , into the equation to find PF purely in terms of x and 

a. Consequently, the ray length  can be expressed as:  

                                                (2) 

Expanding and simplifying the expression under the square root:   
 

                                                (3) 

 

                                                (4)  

This can also be factored to: 

                                                         (5) 

 
In a parabola, the distance from the point to the focus equals the distance from the 

point to the directrix. Since  represents a distance, which is always non-negative:  

                                                        (6) 

From the point P(xp, yp), draw a perpendicular line that intersects the x-axis at 
point D. The triangle △ypxpFP is right-angled, with xp on the x-axis,  as the hypotenuse, 

and yp as the vertical side. From this, we will derive the trigonometric functions which 
represents the ratio of the vertical side  and horizontal side xp to the hypotenuse  

related the point S along the parabolic segment, thus:  
• Parabola sine function (sinp u): This represents the ratio of the vertical side xp to the 

hypotenuse . 

• Cosine Function (cosp u): This represents the ratio of the base yp  to the hypotenuse 

. 

           
These functions describe the relationship between the coordinates of the point 

P(xp,yp), on the parabola and the angle u formed at the focus F of the parabola. From the 
right-angled triangle (∆FPC), we find the two fundamental functions of the parabola; 

 and , which can be derived for any point, P(xp, yp) is a point at the parabola 

segment:  
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Also, Arch Center point is the parabola focus, which lies at the origin point, which is 
the point F (0,0), then, the (tanp u) can be defined as a ratio by the tangent ( ) of the 

unit circle. Hence the tangent of an angle u is defined as the ratio of the  to the 

 of the angle, and then the proportion: 

 
And from the definition of the tangent function, we can derive: 

 
Thus: 

 
To find the reciprocal of the parabolic sine function (7): 

 
Therefore, the reciprocal of the parabolic sine function  is : 

 
Thus the reciprocal of the parabolic cosine function  is : 

 
It is important to note that a standard parabola, y2 = 4ax  has a distinct relationship 

between xp and xp, while |xp ± a| doesn't directly describe a parabolic curve but rather a 
ratio that depends on the coordinates relative to the focus. These expressions provide 
the reciprocal trigonometric functions based on the parabolic coordinates. These 
functions are expressed in a normalized form relative to the horizontal distance |xp ± a|. 
This normalization provides a clear and specific way to relate the coordinates of a point 
on the parabola to trigonometric functions. Understanding how the coordinates of a 
point on the parabola relate to trigonometric measures.  

Also, applying these relationships in contexts where parabolic shapes are used, 
such as in optics or structural design. Graphing these functions can visualize how each 
function behaves with respect to the coordinates on the parabola, Picture 2. 
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Picture 2. Plot of the geometric method to draw the parabolic functions when angle 

u is greater than  

 

When  , the parabolic functions are:  

In this case, when angle u greater than  , the ray  extends to intersect the 

Directrix at point H, thus:  
 

  ,  

 

It is seen from the function proportions in Picture 3 that because the ray  lies 

within the negative part of x-axis, then the value of  and then xp are negative, (see 

Table 1). Also, at this range of u, it can lead to obtain another relationship from the right-
angled triangle ∆HAF, that connect between parabolic functions of  and : 

 

 ,  

 
 And by rewriting the given equation in terms of  and : 

 
 ,  

Hence  is the reciprocal of . To express  using the given 

relationship, we use the identity:  
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 Thus, use these identities to express  and  in terms of   and a:  

 

In essence, you've used the given equation to derive expressions for cscp u and 
cotp u based on their relationships with tanp u and secp u. These expressions help us 
understand how these modified trigonometric functions relate to each other in the 
context of specific geometric problem involving the parabola.  

 
Algebraic Values: 

For a parabola with (a – 1), the algebraic expressions for the most important 
angles are as follows: 

The equation simplifies to , so that;  then this form required 

to calculate xp and yp.  based on these trigonometric identities. For each angle u, 
computed by the following forms: 

 

 
 
Thus: 
 

 
 

 
Also, 

 
Then:  

 
Building on the previous results, and from any point P(xp, yp), on the parabola 

segment , the values of xp, and yp can be determined according to values of distance of  

and values of sinp u and cosp u, by formulae : 
 

https://en.wikipedia.org/wiki/Algebraic_expression
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     Also, at this range of slops, , this leads to obtain other traigonometrci 

relationships from the right-angled triangle ∆ HAF, that: 
 

 ,  

 

 
 
And according to the trigonometric ratios, we find the following: 
 

 
 

 
 
Which can be presented by: 

 
 
Thus, length value of line segment is given by: 

 

 
 
And from the right-angled triangle ∆ HAF, (Picture 3), the length of : 

 

   

 

  

 
and then: 

  

 
Also, where P(xp,yp)  is a point at the parabolic segment, and a is the distance 
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between the parabola focus and the vertex, thus the value of a is remain as a constant. 
 

The Sincon’s Arch 

In this paper, a special arch is designed at a quarter circle whose center is the 
parabola focus point, F, lies at the origin point, which is the point F (0, 0). The Sinocon’s 
Arch is constructed with its center at the parabola’s focus, F, and a radius equal to twice 
the fixed distance between the focus and the parabola’s axis of symmetry (the Directrix), 
the radius = 2a. The Sinocon’s Arch serves as a reference for analyzing the parabolic 
curve’s dimensions as the point of intersection varies within a defined angular range          
(u ≤ π), as it is illustrated in Picture 1. In this paper, the given name of Sincon’s Arch is a 
mix of sine and cosine words, and it is drawn from the focus point with radius of 2a, the 
basic geometric specifications for Sincon’s Arch are outlined in the following Table 1. 

 
Table 1. Key proportions of Sincon’s Arch 

 

Proportions Values 

Start Point at y-axis (0, 2a) 

End Point at x-axis (-2a,0) 
Arch Center point, the Origin point. F= (0,0)  
Arch’s radius 2a 
Arch length  
Shaded area by the arch. 0.785375a 

Where (a) is a constant, which is the distance from the parabola’s 
focus and the vertex.  

 
There is a fundamental aspect of designing Sincon’s Arch with these specifications, 

which are linked with values of sinp u and cosp u. The purpose of designing this arc is 
evident in its use as a reference for determining the extension points of both sinp u and 
cosp u, which result from the intersection point of the ray with the arc's circumference. 
From this intersection point, G, a perpendicular line is drawn to the negative x-axis. The 
length of this perpendicular line  determines the value of the , while the 

distance between the projection of this line and the horizontal extension to the focus 
point, , gives the value of the ,  where:   

 

   

 

 
 

There is a constant ratio between the area under the parabola curve and the 
remaining area occupied by the arc (AGM), which remains consistent regardless of the 
curve's condition, as it is illustrated in Picture 4. 
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Picture 4. Plot the proportions of the Sincon’s Arch related to the parabola segment 
and Unit crcle at origin point, F, where P(xp, yp), is a point on the parabola segment 

 
Construction Method  

In this paper, a geometric method is used based on proprertions of parabola and 
the unit circle, to represent these driven six functions associated with the parabolic 
segment, (sinp u, cosp u, tanp u, secp u, cscp u, and cotp u), based on the following key 
technique: 

By drawing a parabola segment such that its focus, F, is positioned at the origin 
point, F(0, 0), see Picture 4 . 
• From the parabola diffenation, draw the Directrix from point A, parallel to the y-axis 

and at a horizontal distance of a from the focus, F. 
• Identify a point on the parabola curve, P(xp, yp), and then construct a ray connecting 

this point to the focus, .  

• The vertical projection of the point onto the x-axis, represents the value of yp, while 
the horizontal distance from the focus, represents the value of xp. 

• Draw an arch (named as Sincon-Arch), whose center is the focus,F, with radius of 2a, 
this arch intersects the y-axis at the same point, G, in which the parabola crosses the 
y-axis.  

 
After determining the coordinates, reflect the ray  image at the same angle of 

inclination but on the left side of the y-axis, i.e., in the second quadrant. This is a crucial 
step to enable the determination of the values of the six trigonometric functions for the 
parabola. The intersection point of the reflected ray on the Directrix, H, will determine 
the value of tanp u, and the intersection point of the reflected ray on the Sincon-Arch, G, 
will determine the value of sinp u. The horizontal distance from the focus to the position 
of the vertical projection of the intersection point of the reflected ray with the Sincon-
Arch, will represent the cosp u, where:  

• When  , the  and  where  

• When  , the   and  where  
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According to the innovative geometric method introduced in this paper, after 

drawing the ray at a specific angle, the direction of the (FP), ray is reflected as a mirror 
image with the same angle of inclination at the negative x-coordinate, extending to 
intersect the parabola's Directrix at the extension point H. 
 

 
When:  , 

 

 

                     When:  , 

 
Picture 4. Plot of the geometric method to draw the parabolic functions related to angle u 
values, where P(xp, yp) is a point on the parabola segment (PF), and the distance from the 

focus (F) and the vertex (AB = BF) is a constant =a, while the ray  slops with angle u 
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The horizontal distance between the intersection point, (G), of the parabolic curve 
with the y-axis, extended to its intersection with the ray , represents the reciprocal of 

the tanp u value. The key steps for determining the trigonometric ratios specific to the 
six functions of the parabola are listed in Table 2, and as shown in Picture 4. 
 

Table 2. Plot the parabolic functions derived by a point P ( ) on the parabola. 

 

Parabolic sinp u cosp u tanp u secp u cscp u cotp u 

Line 
Segments 

Gg Fg HA HF NF NM 

Where, a is the distance between the focus and the vertex, and u is the angle of the ray FP 

 
Visualizing the Parabolic Functions 

It can be observed from figure 8 that for every  with an angle less than  

degrees, there is a corresponding negative angle that shares the same parabolic 
functions of sine, cosine, tangent, and their reciprocals. The only difference is by values 
of xp and yp because of position of point P related the parabola segment. For example, 
when  lies by u = 56º, hence this angle is a corresponding the angle:  

124º, as they were listed in Tables 3 and 4.  
 

Table 3. The parabolic functions with for angles u ranged from  

 

Angle u         

0  0.000000 0.000000 a 0.000000 1  0.000000 

5 305.8683  24.8189  0.0809  0.9967  0.0808  1.00331  12.3609  12.37623  

10 81.2625  13.7386   0.1667  0.9860   0.1691  1.01419  5.99880  5.913660   

15 28.1615  7.73930  0.2650  0.9643  0.2748  1.03702  3.77358  3.639010  

20 15.6294  5.6740  0.3413  0.9400  0.3630  1.06382  2.92997  2.754820  

25 9.9238  4.5712  0.4184  0.9083  0.4606  1.10095  2.39000  2.171081  

30 6.3325  3.6974  0.5042  0.8636  0.5838  1.15794  1.98333  1.712915  

35 4.5893  3.1883  0.5706  0.8213  0.6947  1.21758  1.75254  1.439470  

40 3.2592  2.7329  0.6425  0.7663  0.8385  1.30497  1.55642  1.192605  

45 2.4412  2.4140  0.7031  0.7111  0.9888  1.40627  1.42227  1.011326  

50 1.7628  2.1203  0.7690  0.6393  1.2028  1.56421  1.30039  0.831393  

55 1.3130  1.9011  0.8228  0.5683  1.4479  1.75963  1.21536  0.690655  

60 1.0159  1.7397  0.8636  0.5043  1.7124  1.98294  1.15794  0.583975  

65 0.7087  1.5543  0.9099  0.4148  2.1933  2.41080  1.09902  0.455933  

70 0.5153  1.4250  0.9404  0.3401  2.7654  2.94031  1.06337  0.361611  

75 0.3433  1.2988  0.9668  0.2556  3.7828  3.91236  1.03434  0.264354  

80 0.2164  1.1972  0.9841  0.1779  5.5327  5.62113  1.01615  0.180743  

85 0.0987  1.0944  0.9960  0.0898  11.0882  11.1358  1.00401  0.090185  

89 0.0224  1.0221  0.9998  0.0219  45.6885 45.66210 1.00020  0.021887 

90 0.000000 2a 2a 0.000000 ∞ ∞  a ∞ 

95 -0.0759  0.9223  0.9966a -0.0820  12.1514   12.1951  1.00341  0.082295  

100 -0.1481  0.8394  0.9848  -0.1738  5.66780  5.75373  1.01543  0.176435  

105 -0.2042  0.7691  0.9665   -0.2566  3.76620  3.89711  1.03466  0.265519  

110 -0.2558  0.6987  0.9391  -0.3438  2.73170  2.90866  1.06485  0.366072  

115 -0.2951  0.6401  0.9081  -0.4187  2.16880  2.38834  1.10120  0.461084  

120 -0.3354  0.5739  0.8634  -0.5046  1.71110  1.98176  1.15821  0.584419  

125 -0.3617  0.5259  0.8240  -0.5667  1.45400  1.76460  1.21359  0.687758  
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Angle u         

130 -0.3894  0.4701  0.7701  -0.6379  1.20720  1.56764  1.29853  0.828363  

135 -0.4122  0.4187  0.7126  -0.7016  1.01560  1.42531  1.40331  0.984639  

140 -0.4332  0.3659  0.6453  -0.7640  0.84470  1.30890  1.54966  1.183852  

145 -0.4491  0.3189  0.5789  -0.8154  0.71000  1.22639  1.72741  1.408450  

150 -0.4648  0.2665  0.4974  -0.8675  0.57340  1.15273  2.01045  1.743983  

155 -0.4754  0.2213  0.4220  -0.9066  0.46540  1.10302  2.36967  2.148689  

160 -0.4838  0.1736  0.3377  -0.9412  0.35880  1.06247   2.96120  2.787068  

165 -0.4914  0.1308  0.2573  -0.9663  0.26610  1.03487  3.88651  3.757985  

170 -0.4968  0.0800  0.1591  -0.9873  0.16110  1.01286  6.28535  6.207324  

175 -0.4990  0.0449  0.0896  -0.9960  0.08990  1.00401  11.16071  11.123470  

180 -a 0.000000 0.000000 -2a 0.000000 -a ∞ ∞ 

 

Values for xp  and  yp are rounded to 4 decimal places, and 6 digits for secp u, cscp u, and cotp u. 
Parabolic functions are calculated based on the angle u and corresponding xp and yp. 

For angles approaching  degrees, the tangent and secant functions approach infinity. 

 
Table 4. The parabolic functions with a = 1, for angle u ranged from (u ≤ π) 

 

Angle u xp yp sinp u cosp u tanp u secp u cscp u cotp u 

5 305.8683   24.8189  0.0809 0.9967 0.0811 1.0033109 12.360939 12.330456 

175 -0.49900  0.0449  0.0809 0.9967 0.0811 1.0033109 12.360939 12.330456 

10 81.2625 13.7386 0.1667 0.9860 0.1691 1.0141987  5.998800 5.9136605 

170 -0.4964 0.0839 0.1667 0.9860 0.1691 1.0141987  5.998800 5.9136605 

15 28.1615 7.7393 0.2650 0.9643 0.2748 1.0370216 3.7735849 3.6390101 

165 -0.4909 0.1349 0.2650 0.9643 0.2748 1.0370216 3.7735849 3.6390101 

20 15.6294 5.6740 0.3413 0.9400 0.3630 1.0638297 2.9299736 2.7548209 

160 - 0.4845 0.1759 0.3413 0.9400 0.3630 1.0638297 2.9299736 2.7548209 

25 9.9238 4.5712 0.4184 0.9083 0.4606 1.1009578 2.3900573 2.1710812 

155 -0.4760 0.2192 0.4184 0.9083 0.4606 1.1009578 2.3900573 2.1710812 

30 6.3325 3.6974  0.5042 0.8636 0.5838 1.1579434 1.9833399 1.7129153 

150 -0.4634 0.2706  0.5042 0.8636 0.5838 1.1579434 1.9833399 1.7129153 

35 4.5893 3.1883  0.5706 0.8213 0.6947 1.2175818 1.75254118 1.4394702 

145 -0.4509 0.3133  0.5706 0.8213 0.6947 1.2175818 1.75254118 1.4394702 

40 3.2592 2.7329 0.6425 0.7663 0.8385  1.3049719 1.55642023 1.1926058 

140 -0.4338 0.3638 0.6425 0.7663 0.8385  1.3049719 1.55642023 1.1926058 

45 2.4412 2.4140 0.7031 0.7111 0.9888  1.4062719 1.42227279 1.0113268 

135 -0.4155 0.4109 0.7031 0.7111 0.9888  1.4062719 1.42227279 1.0113268 

56 1.2847 1.8890 0.8269 0.5624 1.4705 1.7780938 1.20933607 0.6800401 

124 -0.3599 0.5293 0.8269 0.5624 1.4705 1.7780938 1.20933607 0.6800401 

60 1.0159 1.7397   0.8636 0.5043 1.7124 1.9829466 1.15794349 0.5839757 

120 -0.3352 0.5741 0.8636 0.5043 1.7124 1.9829466 1.15794349 0.5839757 

65 0.7087 1.5543 0.9099 0.4148 2.1933 2.4108003 1.09902187 0.4559339 

115 -0.2932 0.6431 0.9099 0.4148 2.1933 2.4108003 1.09902187 0.4559339 

70 0.5153 1.4250  0.9404 0.3401 2.7654 2.9403116 1.06337728 0.3616113 

110 -0.2538 0.7018  0.9404 0.3401 2.7654 2.9403116 1.06337728 0.3616113 

80 0.2164 1.1972 0.9841 0.1779 5.5327 5.6211354 1.01615689 0.1807435 

100 -0.1510 0.8355 0.9841 0.1779 5.5327 5.6211354 1.01615689 0.1807435 

90 0.0000  2a 2a 0.0000  ∞ ∞ a ∞ 

180 -a 0.0000 0.00000 -2a 0.00000 -a ∞ ∞ 
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To visualize the Parabolic Functions, we will graph the sine and cosine functions 
for a point P(xp, yp), moving along the parabola segment. The angle u will change as xp 

changes. Similarly, the parabolic sine function  , will typically increase as yp 

increases, and will be inversely proportional to . While Parabolic cosine function 

will typically increase as xp increases, and will be inversely proportional to 

. To graph these parabolic functions, we need to: 

1. Calculate functions for various angles. 
2. Plot parabolic functions versus angle u.   

 
And by the Desmos, here is the graph of the parabolic sine function  versus 

the variable xp, with a fixed value of a = 1. The function is defined as:   

The graph below shows how the parabolic sine function behaves with respect to 
changes in xp. The plot demonstrates the relationship between the input xp and the 
corresponding value of s , see Pictures 5 to 8. 

 

 
 

Picture 5. Graph of the parabolic sine function versus angle by the Desmos. 
 
Similerlly, the graphs of all parabolic functions are plotted below: 
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Picture 6. Graphs visualize by the Desmos the behaviour of cosp u, tanp u, and cotp u 
functions with respect to the variables, u, xp, and yp, where a = 1. The plots also illustrate 

how these parabolic functions relate to each other 
 

 
 

 
 

Picture 7. By the Desmos, visualizing the behaviour of csp u, and secp u, parabolic 

functions with respect to the variable, u, xp and yp, where a = 1 
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Picture 8. By the Desmos, visualizing the behaviour of all 6 parabolic functions, to the 

variables, u, xp and yp, where a = 1 

 
Integration of Parabolic Functions 

Let’s integrate each of these functions with respect to u. Note that these integrals 
might not always have straightforward antiderivatives, especially if the functions are 
defined in terms of xp and yp, which are functions of u. Here, we’ll perform the 
integrations assuming the a is constants and parameters xp and yp  are functions of u. 

 

 
 

Perform Integration using standard techniques or numerical methods if necessary. 
Since a is the constant distance between the parabola's focus and its directrix, it plays a 
significant role in the equations related to the parabolic functions. The integral must 
represent the parabolic function's relation to the geometric configuration of the 
parabola. The constant the constant a shift the function, reflecting the geometry of the 
parabola. To integrate the parabolic sine-function, :  

 

Given  , and  , these can be written as: 
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Note that these integrals represent the relationship between the angle u and the 
parabolic sine and cosine function, taking into account the geometric properties of the 
parabola. To simplify this advanced integral, we need to use some advanced integration 
techniques, such as variable substitution or series expansion to analyze complex 
functions like . We start by attempting to analyze the complex function within the 

absolute value. Let’s assume: 
 

 
 
So, the integral becomes: 
 

 
 
Assume that z can be simplified or changed to a new variable v where: 
 

 
 
This implies: 
 

 
 
If we assume that  can be represented similarly to traditional trigonometric 

functions, we can use derivatives of cosp u to calculate dv. If the function cosp u has an 
expression that can be expanded as a series, we can use a Taylor series (Chemin, 2005; 
Fahim et al., 2021), to approximate the function. For example: 

 

 
 
Where  are coefficients depending on the properties of the function. We can then 

substitute this expression into the integral and analyze it term by term, then evaluate 
the integral, we get: 

 

 
 
This gives: 
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Substitute the Original Variables: 
 
We substitute v back with the original value, we assumed for z: 
 

 
 
Thus, the integral simplifies to: 

 
 
Where C is the final constant of integration, and thus, the integral of  is:   

 

 
 
To find the integral of cscp u (cosecant) based on the integral of  and its 

relationship with cosp u, we typically use the integral formula: 
 

 
 
The integral of  can be written as:  

 

 
 
Given the specific form of the integral for :  

 

 
 
To find cscp u, substitute and rearrange:  
 

 
Simplify to: 
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Incorporating the specific parameters, the integral might take a form that aligns 
with your definitions of xp and yp, and other constants. In the context of cscp u, which is 
the cosecant function related to the parabola, the same general formula applies.   
Similarly, the integral of secp u would be: 

  

 
           

This result reflects the integral's form, adjusted for the parabolic secant function, 
secp u. This simplification heavily depends on the properties of the function cosp u and 
whether it can be represented by series or known derivatives. These results reflect the 
specific relationships and geometric parameters in the context of parabolic 
trigonometric functions. The coefficients of angle u in the integrals reflect different 
factors related to xp and yp. These coefficients indicate how the rate of change of the 
integral with respect to u is affected by the parameters of the parabola. The logarithmic 
terms have different coefficients, to xp and yp, respectively. This suggests that the 
contribution of the logarithmic term to the integral's overall value is scaled differently 
for sinp u and cosp u. The argument inside the logarithm is the same for both integrals, 
but the coefficients outside the logarithm vary. Both integrals include the constant C, 
which accounts for the indefinite nature of the integration. The coefficients are 
determined by yp for sinp u and xp for cosp u. This reflects the different influence of these 
parameters in the context of the integrals. Also, both integrals have a logarithmic term 
involving |xp ± a| cosp u ± a, but with different scaling factors.  

The idea of an infinite product expansion for parabolic functions sinp u and cosp u 
based on their definitions could be analogous to the infinite product expansions of 
standard trigonometric functions. The infinite product expansions for standard 
trigonometric functions are based on their zeroes or roots. For parabolic trigonometric 
functions, which are defined analogously but relate to a parabola, a similar approach can 
be adapted.  

 
Given:    

 
 

 
 
     Now, to explore potential infinite product expansions for these functions. Infinite 

Product Expansion for sinp u: For standard sine, the infinite product is: 
 
    A similar approach could be imagined for sinp u, involving the parameters yp and 

|xp ± a|. We would express  sinp u in a form that captures its dependence on u. 
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Infinite Product Expansion for cosp u: For the standard cosine, the infinite product 
is: 

An analogous expansion for cosp u would similarly involve xp and |xp ± a|, and 
would need to capture the behavior of cosp u as u varies. 

 

 
 

Determine the zeros of sinp u and cosp u. These zeros are crucial for building the 
product expansion. Propose a general form of the product based on the identified zeros. 
For example, for cosp u, and u are the zeros of sinp u, the product might take a form such 
as. 

  

 
 

Now it is needed to determine the constants (like K), to ensure the expansion 
converges correctly and represents sinp u and cosp u. Also, compare the resulting 
expansions with known infinite product expansions for standard trigonometric 
functions to ensure consistency. This approach would lead to a deeper understanding of 
parabolic functions in relation to their trigonometric counterparts. However, deriving 
exact forms would require specific knowledge of the zeros of sinp u and cosp u, and 
possibly involve advanced techniques in infinite product theory. 

 
Determine the Zeros of sinp u and cosp u  

The zeros of the standard sine function are the values of x for which the function 
sin(x) = 0. These occur at all integer multiples of π, that is: x = nπ. Larson and Edwards 
(2013) and Stewart (2016) find that the sine function is defined on the unit circle, where 
sin(x) gives the y-coordinate of a point on the circle. Building on the zeros of the 
standard sine function, it is occurred at; u = πu, where n is an integer. For sinp u, we need 
to find values of u that make sinp u = 0. This implies yp = 0, which corresponds to points 
on the parabola where yp = 0. These points are directly on the x-axis. It needs to express 
these points in terms of the variable u. 

Similarly, the zeros of the standard cosine function occured at;  . For 

, we need to find values of u that make cosp u = 0. This also implies xp = 0, which 

corresponds to points on the parabola where xp = 0. Once the zeros are identified, the 
infinite product expansion can be formulated. The general structure of an infinite 
product expansion of parabolic functions, fo sinp u and cosp u, would be: 

 

 

 
and:  
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Here,  represents the zeros of  (i.e., where =0), and K is a normalization 

constant that ensures the correct amplitude. And  vn nrepresents the zeros of cosp u (i.e., 
where xp = 0), and K′ is another normalization constant. 
          The constants K and K′ need to be determined to ensure that the product 
expansions correctly represent sinp u and cosp u. This typically involves evaluating the 
functions at specific points (e.g., u = 0) and comparing them with the expected values. 
We need to simplify the infinite product expressions using known properties of the 
parabolic functions, and to identify any patterns or simplifications.  
           The point P(xp, yp) lies on the parabola segment, and subsequently where yp = 0 
corresponds to the x-axis, thus we need to find the conditions under which yp = 0 in 
terms of u. For a parabola in its standard form, we get: 
 

  setting ;  gives: 

 

 ,                                                                      

 
So, the zeros of  occur at:  

 
 , or    

       

     However, to link these values to u, we would need to express xp  and yp as 
functions of u. Typically, u might represent an angle or another parameter related to the 
geometry of the parabola. We also need a specific relationship between u and xp (or yp) 
to proceed further. 

To proceed further, we need to establish a relationship between the parameter u 
and the coordinates xp and yp of the point P(xp, yp) on the parabola. Note that this 
relationship could be derived from the geometric definition which are using or a 
parametric representation of the parabola segment. 

Therefore, the infinite product expansion for the parabolic function of cosp u is: 
 

 

 
To determine K′, let's evaluate cosp u at u = 0: 
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Since cosp (0) = 1, it follows that: 
 

 
 
Thus, the infinite product expansion for cosp u becomes: 
 

 

 
These expansions capture the behavior of the parabolic functions sinp u and cosp u 

based on their zeros and the angle u related to the coordinates xp and yp of point P(xp, yp) 
on the parabola.  

Euler's formula (Stewart, 2016), which traditionally relates the trigonometric 
functions sinp u and cosp u to the exponential function, can be extended to the parabolic 
functions sinp u and cosp u. For parabolic exponential function, we aim to establish a 
similar relationship:  

 

  ,                                                   

Where  is a parameter that used to be determined to match the behavior of parabolic 

functions, then: 
 
Given the parabolic functions:  
 

 

 

 
Thus, by applying both equations of sinp u and cosp u, we get a special exponential 
function of Euler’s: 
  

 
 
To verify or refine this parabolic identity, let us consider the exponential function 
expanded as a Taylor series: 
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Expanding separately for real and imaginary parts, we get: 
 

  

 
This separates into:  
 

  

Also:  

  

 
Now, we will compare these series expansions with the known forms of sinp u and 

cosp u. To achieve the parabolic nature: 
 

 
 

Thus, Euler's formula for parabolic functions becomes: 
 

 ,                                                

 
If we assume a specific normalization, such that p  aligns with typical 

trigonometric functions, we could set p = 1, giving  the adapted Euler's formula for both 
parabolic functions is:    

 

  ,                                                

  ,                                                

 
This formula ties the exponential function directly to the parabolic sine and cosine 

functions, with the parameter |xp ± a| reflecting the geometry of the parabola in relation 
to the point P(xp, yp).  This formula relates the exponential function to parabolic analogs 
of sine and cosine functions, accounting for the specific geometric properties of the 
parabola.   

By the exponential function definition, eiu should vary continuously with xp, which, 
as evidenced by the table, clearly changes with respect to the parameter u. In terms of 
parabolic trigonometric functions, eiu based on formulation (71), where the denominator 
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approaches zero, this formula needs careful handling, suggesting it might require special 
consideration near the vertex or when xp aligns with the focus, Table 4. 

 
Table 4: The eiu values for angles u from 0 to degrees 

 

Angle u sinp u Cosp u the complex function eiu 

0 0.80000 2.00000 0.80000+2.00000i  
15 0.25714 1.37143 0.25714+1.37143i 
30 0.16000 0.80000 0.16000+0.80000i 
45 0.11111 0.55556 0.11111+0.55556i 
60 0.07273 0.90909 0.07273+0.90909i 
75 0.04667 0.96533 0.04667+0.96533i 
90 0.04706 0.94118 0.04706+0.94118i 

105 -0.02353  0.99020  -0.02353+0.99020i 
120 -0.03478 0.95652 -0.03478+0.95652i 
135 -0.02262 0.97000 -0.02262+0.97000i 
150 -0.02759 0.96552 - 0.02759+0.96552i 
165 -0.01657 0.98573 -0.01657=0.98573i 
180 -0.02286 0.97143 -0.02286+0.97143i 

  
eiu is computed as sinp u + i cosp u, reflecting the complex exponential function. 
By exploring a parabolic version of Euler's famous complex formula, but instead of 

using ordinary in classical (circular) trigonometry,  and , we're using  

and , which are functions defined relative to a parabola. When we apply this 

formula across angles u from 0 to 180∘, table 4 showed that: 
• The real part (sinp u) varies, sometimes positive and sometimes slightly negative. 
• The imaginary part (i cosp u) stays positive and close to 1, never becoming negative 

(even at 180∘). 
• This behavior is very different from circular trigonometry: 

• In circular eiu becomes negative for angles beyond . 

• In our parabolic functions, i cosp u remains positive even after  

 
The important point here is that the parabolic "rotation" behaves differently than 

circular rotation.  Even at 180∘, the parabolic cosine is positive. It suggests that motion 
along the parabola doesn’t mirror the traditional cycle of sine and cosine (where cosine 
flips sign). Also, the complex values stay in a specific quadrant. Since cosp u is always 
positive and sinp u is mostly small (sometimes slightly negative), the points eiu  lie mostly 

near the positive imaginary axis, but shifted slightly left or right.  

Regarding the periodicity, results in table 4 indicated that in the circle, goes full 

circle back to 1 when u = 2π. Here, at u = 180∘ (which is π), the values don't "return"  
instead, they stay clustered, showing that the parabolic structure is not truly periodic 
like a circle. The reason here is that the imaginary part (cosp u) is much larger than the 
real part (sinp u) almost everywhere, (see Picture 1 and 2). Results in table 4 indicated 
that the imaginary component dominates, as the real component is small, even negative 
sometimes, since no symmetry like in the unit circle . Meaning the "rotation" behavior is 
dominated by motion along the imaginary (vertical) axis. This opens the door to a new 
type of complex analysis based on parabolic functions rather than circular ones. 

This formulation not only reinforces the analogy with Euler's classical identity but 
also establishes a novel framework for analyzing waveforms, oscillatory behavior, and 
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functional transformations within parabolic geometries. Ultimately, the adapted Euler’s 
formula opens new avenues for advancing the theory of parabolic functions, with 
promising implications across mathematical physics, signal processing, and the study of 
geometric transformations. By integrating exponential expressions with parabolic 
trigonometric analogs, this approach provides a robust mathematical paradigm for 
characterizing non-circular periodic phenomena inherently linked to parabolic 
structures. 
 
 
Conclusions   

In this paper, we derive explicit formulas for the series of segments on the 
parabolic segment, where the focus of the parabola is the center of the origin. It has 
introduced and explored a novel framework for defining and analyzing trigonometric 
functions specific to the geometry of the parabola. By extending the classical concepts of 
sine and cosine, we derived the parabolic trigonometric functions sinp u and cosp u, 
tailored to the unique properties of a parabolic curve. These expansions capture the 
behavior of the parabolic functions sinp u and cosp u based on their zeros and the angle u 
related to the coordinates xp and yp of point P(xp, yp) on the parabola. The results 
presented reveal a fundamental departure from classical circular behavior when 
extending Euler’s formula to parabolic functions. Unlike in circular trigonometry, where 
the cosine function changes sign and eiu completes a full rotation back to 1 at u = 2π, the 
parabolic cosine remains positive even at u = π, and the complex exponential values eiu 
cluster predominantly near the positive imaginary axis. This behavior reflects a lack of 
full periodicity and a dominance of the imaginary component, with the real part 
remaining small and sometimes negative. As a result, the parabolic "rotation" does not 
mirror the cyclical symmetry of the circle but instead exhibits a distinct, asymmetric 
trajectory. These findings emphasize that the parabolic structure introduces a new 
mode of complex motion, primarily governed by vertical (imaginary) movement rather 
than circular balance between real and imaginary parts. This opens the door to a new 
branch of complex analysis, tailored to parabolic geometries rather than circular ones. 
By adapting Euler’s classical identity to the parabolic setting, this formulation provides a 
powerful new framework for analyzing waveforms, oscillatory behaviors, and geometric 
transformations where parabolic shapes are inherent. The integration of exponential 
expressions with parabolic trigonometric analogs lays the foundation for broader 
applications across mathematical physics, signal processing, and the study of non-
circular periodic phenomena. Thus, this work establishes a robust paradigm for 
extending the theory of complex functions into the realm of parabolic structures. 

Looking ahead, future research could investigate practical applications of these 
parabolic functions in areas such as physics, engineering, and computer graphics fields 
in which parabolic forms and trajectories are frequently encountered. Additionally, 
extending this analytical framework to encompass other conic sections, such as 
hyperbolas and ellipses, presents a promising direction for further theoretical 
development and interdisciplinary exploration. 
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Appendex 1: 

 
When , 

Picture A1. The parabolic functions obtained by two ranged angles, (u=120º). 

 

 

When , 
 

Picture A2. The parabolic functions obtained by two ranged angles, (u=120º) 
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When , 

Picture A3. The parabolic functions obtained by two ranged angles, (u=60º). 
 

 

When , 
 

Picture A4. The parabolic functions obtained by two ranged angles, (u=150º). 
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When , 

Picture A5. The parabolic functions obtained by two ranged angles, (u=90º). 
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Picture A6. All the parabolic functions obtained by ranged angles, (u= 60º) 

 

 


