| Alifmatika Journal doi: 10.35316/alifmatika.2025.v7i1.34-52 |

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika
Volume 7, Issue 1, 34-52, June 2025
e-ISSN: 2715-6109 | p-ISSN: 2715-6095

@i!ﬁmn@ https://journal.ibrahimy.ac.id/index.php/Alifmatika

Jurnal Peadidikan dan Pembelajaras Matematila

A learning trajectory for developing computational thinking
in prospective mathematics teachers through Python
programming in Google Colab

Edi Irawan!*"', Moh. Khoridatul Huda2"" ', Ratni Purwasih3

*Tadris Matematika, Universitas Islam Negeri Kiai Ageng Muhammad Besari Ponorogo, East Java 63471,
Indonesia
ZPendidikan Guru Madrasah Ibtidaiyah, Universitas Islam Raden Rahmat, East Java 65163, Indonesia

3Pendidikan Guru Sekolah Dasar, Institut Keguruan dan [lmu Pendidikan (IKIP) Siliwangi, West Java
40521, Indonesia

"nawariide@iainponorogo.ac.id, 2moh.huda@uniramalang.ac.id, 3ratnipurwasih @ikipsiliwangi.ac.id

Received: March 22, 2025 | Revised: April 28, 2025 | Accepted: May 15, 2025 | Published: June 15, 2025
*Corresponding author

Abstract:

Computational thinking (CT) is a fundamental skill that needs to be developed by prospective
mathematics teachers to improve problem-solving and logical reasoning. Integrating programming into
mathematics learning is an effective approach to training this skill. This study aimed to design a
hypothetical learning trajectory (HLT) for developing CT using Python programming on Google Colab.
This study used a didactical design research (DDR) framework consisting of three stages: prospective
analysis, metapedadidactic analysis, and retrospective analysis. The research participants were
prospective mathematics teacher students enrolled in a computer programming course. Data were
collected through observation, code artefacts, and reflective interviews. The results showed that HLT,
designed in stages, improved the four main components of CT: decomposition, abstraction, pattern
recognition, and algorithmic thinking. The students experienced improvements in breaking down
problems, devising more efficient solutions, recognising patterns in code structures, and systematically
designing algorithms. In addition, Google Colab supports learning by providing a collaborative and
accessible programming environment. However, minor syntax errors and lack of attention to indentation
were found. This study recommends using structured debugging strategies and project-based learning in
optimizing CT development. The findings indicate that the integration of programming into the education
of prospective mathematics teachers can equip them with essential CT skills to support technology-based
mathematics teaching.

Keywords: Computational Thinking; Google Colab; Hypothetical Learning; Learning Trajectory;
Prospective Math Teacher; Python Programming.

How to Cite: Irawan, E., Huda, M. K, & Purwasih, R. (2025). A learning trajectory for developing
computational thinking in prospective mathematics teachers through Python programming in Google
Colab. Alifmatika: Jurnal Pendidikan = dan Pembelajaran = Matematika, 7(1), 34-52.
https://doi.org/10.35316/alifmatika.2025.v7i1.34-52

Content from this work may be used under the terms of the Creative Commons Attribution-
ShareAlike 4.0 International License that allows others to share the work with an acknowledgment
of the work's authorship and initial publication in this journal.

Copyright (c) 2025 Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika 34 |

https://journal.ibrahimy.ac.id/index.php/Alifmatika
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0003-4600-7075
https://orcid.org/0009-0004-9283-3225
https://orcid.org/0009-0006-2201-7569
mailto:nawariide@iainponorogo.ac.id
mailto:moh.huda@uniramalang.ac.id
mailto:ratnipurwasih@ikipsiliwangi.ac.id

A learning trajectory for developing computational thinking in....

Introduction

Integrating computational thinking (CT) into mathematics education has become a
global concern because of its role in developing complex problem-solving skills.
According to Wing (2006, 2017), CT involves abstraction, decomposition, pattern
recognition, and algorithmic thinking, all essential in solving complex mathematical
problems. In Indonesia, the Ministry of Education has emphasised the importance of
digital literacy and CT in the curriculum in an effort to produce a highly competitive
generation (Badan Standar, Kurikulum, dan Asesmen Pendidikan Kementerian
Pendidikan Dasar dan Menengah Republik Indonesia, 2025). Mathematics is a subject
highly connected and relevant to CT (Irawan et al., 2024b; Irawan & Herman, 2023).
Therefore, prospective mathematics teachers also need to be equipped with CT skills in
order to be able to solve problems systematically and effectively.

A mathematician, Seymour Papert (1980, 1996) first introduced CT. However, the
term CT developed rapidly after it was redefined by Wing (2006) as a way of thinking
that enables one to formulate and solve problems systematically with computational
principles. Since then, the study of CT has undergone significant developments (Ilic et al,,
2018; Tekdal, 2021). CT is the thought process involved in formulating a problem so that
its solution can be represented as computational steps and algorithms (Aho, 2012). CT is
recognised as a fundamental skill that can be applied to various disciplines, including
mathematics and science (Grover & Pea, 2018). CT skills involve coding and logical,
analytical, and systematic thinking patterns in solving problems effectively (Shute et al.,
2017). CT is a combination of logical thinking, abstraction, and automation, whereas
others emphasise aspects such as problem decomposition, data representation, and
debugging (Weintrop et al., 2015). Therefore, CT is one of the essential competencies in
education in the 21st century.

In addition to experiencing developments in the definition aspect, CT has also
experienced developments in its aspects or components. One of the practical and widely
used groupings of CT components is decomposition, abstraction, pattern recognition,
and algorithms (Badan Standar, Kurikulum, dan Asesmen Pendidikan Kementerian
Pendidikan Dasar dan Menengah Republik Indonesia, 2025; Dong et al, 2019).
Decomposition emphasizes breaking down large problems into smaller parts that are
easier to manage and solve (Dong et al, 2019; Palts & Pedaste, 2020; Wing, 2017).
Pattern recognition helps in identifying similarities in data or problems so that it can be
used to find similar solutions in other situations (Angeli & Giannakos, 2020; Dong et al.,,
2019). Abstraction emphasizes more on filtering out important and necessary
information in solving a problem (Cansu & Cansu, 2019; Dong et al., 2019; Wing, 2006).
Finally, algorithmic thinking focuses on composing logical and systematic steps in
solving a problem (Cansu & Cansu, 2019; Dong et al,, 2019; Wing, 2006). In this study,
these four components are targeted to be developed in learning Python programming
for prospective mathematics teachers.

Researchers have explored various methods for integrating CT into mathematics
education. Various studies have reported that programming is one of the most
promising approaches and has proven effective in developing CT (Kong et al., 2020; Sun
& Zhou, 2023, 2023; Wei et al,, 2021). Python is a programming program that is widely
used in research to develop CT (Irawan et al., 2024a). Many studies have reported that
learning Python programming is very effective for honing and developing students’ CT
(Bai et al,, 2021, 2021; Choi & Choi, 2024; De Jesus & Martinez, 2020; Hsiao et al., 2023;
Jestis & Martinez, 2023; Kamak & Mago, 2023; Kim et al,, 2019; Ren et al,, 2021; Saha,

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
| 35

Edi Irawan, Moh. Khoridatul Huda, & Ratni Purwasih

2015). Python is currently the most widely used programming language (Jansen, 2025),
as shown in Picture 1. Although many previous studies have shown the benefits of
Python programming in developing CT, studies focused on sharpening the CT of
prospective mathematics teachers are limited.

TIOBE Programming Community Index
Source: www.tiobe.com

Monday, Mar 3, 2025
Python: 23.85%

TV

T T T T T T T T T T T T
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

Python == C#+ Java C ==C# JavaScript Go == SQL Visual Basic Delphi/Object Pasca

Picture 1. Trend use of Python programming

Preliminary studies have shown that not all prospective mathematics teachers
have supportive devices. One potential solution to address this gap is to utilize Google
Colab, a cloud-based platform that enables real-time collaboration and interactive
programming (Naik et al, 2021; Vallejo et al., 2022). Google Colab offers advantages
such as seamless access to computing resources and an integrated development
environment for Python (Ferreira et al., 2024; Kuroki, 2021; Llerena-lzquierdo et al.,
2024; Naik et al,, 2021). These features make Google Colab suitable for developing CT
for prospective mathematics teachers. However, there are still no efforts to develop CT
for prospective mathematics teachers through developing a hypothetical learning
trajectory (HLT) in programming courses using Python on Google Colab.

The HLT is a teacher’s prediction of the path that students can take when learning
mathematics (Clements & Sarama, 2024; Simon, 2020). Furthermore, Simon (1995,
2020) mentioned that HLT consists of three main components: learning goals, learning
activities, and the hypothesis of the learning process. There are five stages in the
preparation of HLT, namely: (1) extracting learning goals (LG) from the literature; (2)
categorizing learning goals; (3) clustering learning goals; (4) assembling clusters into
trajectories; and (5) assigning levels of evidence for goals and relationships (Rich et al,,
2017). In this study, we defined HLT as a storyline about teaching and learning Python
programming in Google Colab to hone the CT skills of prospective math teachers. The
storyline includes three interrelated aspects: (1) learning objectives regarding students’
CT, (2) a sequence of instructional tasks that engage students, and (3) a series of tasks
that guide students’ mathematical activities.

To bridge this gap, this study aims to develop a Python programming HLT on
Google Colab to develop the CT of prospective mathematics teacher students. HLT
provides a structured approach to carefully designing learning activities to achieve
learning goals by considering students’ initial abilities (Clements & Sarama, 2024;
Simon, 2020). In addition to mastering the basic concepts of Python to support
mathematics learning, this study also sought to hone students’ CT skills. Therefore, this

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
36 |

A learning trajectory for developing computational thinking in....

study aims to contribute to the development of effective didactic strategies for
integrating CT into mathematics education.

Research Methods

This study used a qualitative approach with an interpretative critical paradigm.
The critical paradigm was used in the development of HLT oriented to hone students’ CT
skills through the use of Python programming. The interpretative paradigm was used to
interpret data related to the development of students’ CT, both in terms of
decomposition, pattern recognition, abstraction, and algorithms. This study uses the
didactic design research (DDR) framework. DDR emphasizes the balance of knowledge
diffusion and acquisition processes (Suryadi, 2013).

Procedures

The procedure in this study followed the three stages of the DDR framework
(Suryadi, 2019). First, at the prospective analysis stage, the initial HLT was developed
based on literature review, expert consultation, and analysis of the knowledge and
needs of prospective mathematics teachers. HLT was organised into a series of activities
that progressively introduced CT concepts through Python programming on Google
Colab. Second, in the metapedadidactic analysis stage, teaching was conducted to
implement the previously designed HLT in the classroom. HLT implementation was
conducted in four lecture meetings, with the materials and tasks listed in the HLT. Third,
at the retrospective analysis stage, qualitative data were analysed to evaluate the
effectiveness of HLT in honing students’ CT skills. The analysis focused on the impact of
Python programming on their CT skills and the learning barriers faced during the
learning process.

Participants

This study involved prospective mathematics teacher students at IAIN Ponorogo
who were taking a computer programming course. A total of 46 students took this
course, consisting of 6 male and 40 female students. The results of the initial
identification show that as many as one person has learned C++ programming, and four
people have learned basic visual programming in Microsoft Excel. However, none of the
participants had previously learned Python. Owing to ethical considerations, the
participants’ identities in this study were anonymous.

Data Collection

The data collected in this study included three factors. First, observational data
during the HLT implementation process were collected during four lecture meetings.
Second, data in the form of artifacts are in the form of Python coding in Google Colab,
which is well documented in Google Drive. Third, data related to the development of CT
students in terms of decomposition, pattern recognition, abstraction, and algorithms.
These three data sets support each other and complement the material in the qualitative
data analysis.

Data Analysis
The qualitative data, including interview transcripts and field notes, were
subsequently analyzed using Atlas.ti® version 9 software. The analysis process was

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
| 37

Edi Irawan, Moh. Khoridatul Huda, & Ratni Purwasih

conducted in three stages: open, axial, and selective coding (Corbin & Strauss, 2015). In
the open coding stage, all Python coding artifacts and interview results were coded to
identify the keywords or main concepts that appeared in the data. Next, at the axial
coding stage, the previously created codes were grouped into categories to produce
meaningful patterns. The final stage, selective coding, was carried out by integrating and
refining the categories and patterns formed from the overall categories of the data.
Through these three stages, findings can be produced that provide a comprehensive
picture of the development of students’ CT skills.

Data Validation

The validity of the data in this study included four aspects: transferability,
credibility, dependability, and confirmation (Denzin & Lincoln, 2018). Transferability is
achieved by providing a detailed description of the research context, research
procedures, learning procedures, and research findings. Credibility was maintained
through the triangulation of sources and methods by comparing the results of
observations, artifact analysis, and interviews, as well as data analysis using the Atlas.ti
software. Reliability was ensured by conducting an audit trail, which provided detailed
documentation of each stage of the research, from data collection, data analysis,
interpretation of results, and documentation of the coding process using Atlas.ti. Finally,
confirmability was achieved by double-checking each step of the analysis and discussing
the findings with peers or experts to gain a more objective perspective.

Results and Discussions

In accordance with the research framework used, the findings and discussion of
this study are presented in three phases of DDR research: prospective analysis,
metapedadidactic analysis, and retrospective analysis.

Prospective Analysis

In the prospective analysis stage, a series of activities was conducted to develop
the HLT. As mentioned by Simon (1995, 2020), HLT consists of three components:
learning goals, learning activities, and the hypothesis of the learning process. Therefore,
the first step was to determine learning goals. The learning goals were based on
identifying the students’ initial understanding of coding using Python programming. As a
result, none of the participating students had learned Python independently or
classically at the previous level. On the other hand, the computer programming course
equips prospective mathematics teachers with foundational programming skills that can
enhance mathematics instruction in their future classrooms. Therefore, the learning goal
in this research is that students can create simple mathematical applications by utilising
Python’s basic functions while honing their CT skills. This study focuses on four basic
functions in Python programming: arithmetic operations, conditions, looping, and
functions. In accordance with the objectives and scope of this study, we developed an
HLT, as presented in Picture 2.

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
38 |

A learning trajectory for developing computational thinking in....

/ N/ 7

= ot ' B ')\ = -
Basic Operation Conditional Looping Function
ml | om0 m]|
[9) [9) [9) [9)
() Introduction of [\ntroduction of looping | | Introduction to functions |
Get to know Python tools = : ntroduction of looping ntroduction to functions
supposition functions :
on Go[o_lgle]CoIab (if and elif) func[t_llpn](for) [(_IQef)]
;1 J L [Té-l] J L ;_1 J ;_1
f N Introduction of (.) [. .
Perform "+", "=", "x" and T e ey T Introduction of looping Creating a simple
""" operation directly p-? lif and el function (while) calculator application
Mol (1, el onl else) [Ts2] [Tl
2 J U [T5-] J L i J) J
L N 2 N [2 N > ™
; : Creating a simple math Create a simple math
- et poc\j'\i/fézt?nd [C%L?/i[fs%;”:pl?ig:tli%i multiplication table multiplication table
[T]y [T F])p application application
- J i J L [T3—3] J L [T4-3] p,
(Create an aO licationto | | . 1 [. 1 [Createan a0 lication to
cal culatepgrea p——y Create a value conversion Create application to find] r(r))(F))ts aler
perimeter application with input LCM and GCD persamaan kuadrat
[T] [T2»4] [T3—4] [T]
ks =4 J J U J X 44 S

Picture 2. Hypothetical learning trajectory programming course to promote CT

Picture 2 shows the HLT, especially in the second and third components, namely
the learning activity and the hypothesis of the learning process. The learning process of
programming courses with Python starts with Task 1 (basic operation), Task 2
(conditional), Task 3 (looping), and finally Task 4 (function). Task 1 begins with an
introduction to cloud-based Python programming on Google Colab, performs addition,
subtraction, multiplication, division, power, and root operations directly, and is
challenged to create a simple application to find the area and perimeter. Task 2
(condition) starts with the introduction of the supposition function (“if” and “elif”), then

“if”, “elif”, and “else”). Students are challenged to create a simple application for value
conversion directly and with input using “if, elif, and else”. Task 3 (looping) starts with
the introduction and elaboration of the looping functions (for) and (while), then
students are challenged to create an application to create a mathematical multiplication
table. Finally, Task 4 (functions) starts with an introduction to functions (“def”).
Students are challenged to create a simple calculator application, a simple value
conversion application, and an application to find the roots of a quadratic equation using
Python’s “def” function.

Another goal of HLT development was to hone prospective mathematics teachers’
CT skills. Four CT skills were gradually honed in each task. The details of the activities to
hone CT through Python programming courses are presented in Table 1. Table 1 shows
that the development of HLT considers not only the conceptual stages in Python
programming but also explicit strategies for honing the CT skills of prospective
mathematics teachers. This HLT development is in accordance with the concept of HLT
development, where learning objectives are based on students’ initial abilities
considering the stages of students’ thinking development (Simon, Kara, et al., 2018;
Simon, Placa, et al., 2018). Based on the initial abilities possessed by students, to achieve
the set goals, a series of tasks are arranged, starting from Tasks 1, 2, 3, and 4. This task

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
| 39

Edi Irawan, Moh. Khoridatul Huda, & Ratni Purwasih

arrangement is done coherently, relevant to students’ thinking, and in accordance with
their learning objectives (Clements & Sarama, 2024). Similarly, the preparation of the
stages of the learning process in each task, from the simplest basic concepts to those that
can be applied in everyday life, especially those related to mathematics. Therefore,
through this HLT, the learning process is based on predictions of how students’ thinking
and understanding will develop, not just trial and error (Simon, 1995; Simon & Tzur,
2004). The various Python programming projects given are also strongly related to the
mathematical context (Guillod, 2024; Saha, 2015), making them very relevant for
prospective mathematics teachers.

Table 1. Promoting CT’s use of Python programming

Series of Pattern

No. Task Decomposition Abstraction Recognition Algorithm

1. Task1 (Basic Students break Identify the Discover patterns Calculate the steps in
Operation) down the problem important parts of of mathematical alogical sequence

into basic the problem (e.g. operations that using Python syntax.
mathematical only the side are often used in

operations before lengths are programming.

combining itintoa required to

single program. calculate the area).

2. Task?2 The conditions are Specify important Recognise Compose the decision

(Conditional) separated into conditions that decision patterns steps systematically
various possible should be tested in based on given using an if-elif-else
outputs based on aprogram, such as conditions. structure.
user input. threshold values.

3. Task3 Breaks repetitive Select relevant Recognise Constructing an

(Looping) tasks into small information in the patterns in efficient looping logic
steps that can be looping patterns to iterative such that the
automated. avoid manually processes, such as program runs
repeating the code. multiplication automatically with
tables. the correct number of
iterations.

4. Task4 Large problems are Understanding the Recognise Construct function-
(Function - divided into role of parameters patterns of based algorithms to
def) smaller functions and return values in function usagein make the code more

that are more simplifying the various efficient and
modular and code. programming organised.
reusable. contexts.

Metapedadidactic Analysis
This metapedadidactic analysis stage focused on observing how the HLT that had

been designed could be implemented directly. As previously designed, HLT was
implemented in four lecture meetings. In the first meeting, students were introduced to
the Python programming language as a simple programming language (Downey, 2024;
Guillod, 2024; Zhuang et al., 2025) and the number of users increased even more in
March 2025 (Jansen, 2025). Because not all the students had computers or laptops, the
Python learning process was performed using Google Colab. Google Colab is a platform
that provides Python online at https://colab.research.google.com, and integrates it
directly with Google Drive (Naik et al., 2021). Thus, the entire Python coding process in
Google Colab is automatically stored on Google Drive. Additionally, the resulting Python
coding can be easily shared or emailed to others (including lecturers). An example of
student-generated coding artefacts in Task 1 is shown in Picture 3.

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
40 |

https://colab.research.google.com/

A learning trajectory for developing computational thinking in....

NAMA : /S———
NIM : SeSSasSna— [2] #Penjumlahan Sederhana [] #Perkalian Langsung

KELAS : TADRIS MATEMATIKA A 2024 _9-1? 3i1_3

14

4]

39

)

v PERTEMUAN PERTAMA

| B33 P t("assalamualaikum")

T s lemlation [] #Pengurangan Sederhana [3] #Pembagian Langsung
- =2 23/4
[1 print("s —_
TGSy i ey e 2 4 5% 6.25
(a) Artifact examples on T1-1 (b) Artifact examples on T1-2
© Print("....SELAMAT DATANG DI KALKULATOR LUAS DAN KELILING PERSEGL.....")
[5] #Pangkat Sederhana prin 3
2773 ey
p nama, kelas, "di Kalkulator Luas dan Keliling Persegi”)
2r 8 keliLing - s+ o
print("keL111ng porsepi,veliling, en)
o #MEﬂ(al"l Akar Kuadrat :’j ++++SELAMAT DATANG DI KALKULATOR LUAS DAN KELILING PERSEGI....
arr(1/2)
a Mur Adsyah MTK.2A di kalkulator Luas dan keliling Persegi
3v 2.0
(c) Artifact examples on T1-3 (d) Artifact examples on T1-4

Picture 3. Coding artifact example on Task 1

Picture 3 shows various evidence of coding artefacts performed by students
related to the utilisation of various basic functions in Python. Students can use several
functions, such as displaying output using the “print” function and performing simple
mathematical operations, including addition, subtraction, multiplication, division,
power, and root. Students also managed to create a simple application to find the area of
a square (T1-4), where the user can input the side length using the “input” function. The
application will display the area and perimeter in Picture 3(d). The results of the
observations and interviews with respondents showed no problems in completing Task
1. Furthermore, in the second meeting, students learned the use of conditional functions
(“if”, “elif’, and “else”) and applied them in the context of daily life problems, as
presented in Picture 4.

) = Q© bil-=o
L HEL= =k if bil > e:
if bil > e: print("Bilangan positif™)
print(“Bilangan positif™) elif bil < @:
elif bil < @: print("Bilangan negatif™)
print(“Bilangan negatif™) else:
print("nol™)
S~ Bilangan negatif 3% nol
(a) Artifact examples on T2-1 (b) Artifact examples on T2-2

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
| 41

Edi Irawan, Moh. Khoridatul Huda, & Ratni Purwasih

) X . . " © nama
° angka = int(input(“Masukkan bilangan ")) alamat
if angka > 91 : tahun_lahir BE)
print("NILAT", angka, "ANDA KATEGORT A ") T - .
elif angka > 81 : v‘w'tdmmidhu'<
print("NILAI", angka, "ANDA KATEGORI B ") print(nams, (jands
elif angka > 71 : i ‘ld'\‘::ml?mr
print("NILAI", angka, "ANDA KATEGORI C ") elif tahun_lahir
Qllf Eng e & &1 € 11 tahun Lohir < 2020 1
print("NILAI", angka, “ANDA KATEGORI D ") nt(nama, (° 1pha"))

else : elif tahun_lahir
print("NILAI", angka, "ANDA KATEGORI E") nt(nama, (“a

Andini
Magetan

)

Masukkan bilangan 1e@ : "
m n ta 0
NILAI 100 ANDA KATEGORI A- Andini anda termasuk Generasi Z

(c) Artifact examples on T2-3 (d) Artifact examples on T2-4

Picture 4. Coding artifact example on Task 2

Picture 4 shows an example of using conditional functions in stages, starting from
the simplest stage. In the early stage (T2-1), students try to use only “if” and “elif”
functions to determine whether a number is positive or negative. Next, they added the
“else” function to add another category (T2-3). Next, the students created a simple value
conversion application (T2-3), where the user can enter any value using the “input”
function. This challenge resulted in the application of value conversion, as shown in
Pciture 4(c). In the final session (Tz24), students created an application to detect
generation categories (baby boomer, X, millennial, Z, alpha, or beta), where users can
enter their name, address, and year of birth using the “input” function. Consequently, the
application displays the identity entered earlier and the generation category, as shown
in Picture 4(d). Furthermore, in the third meeting, students learned the use of looping
functions (“for” and “while”) and applied them in a mathematical context, as presented
in Picture 5.

© #Iterasi pada List © #Perulangan uhile

, c ka = 1
buah = ["Apel”. "M " vyapuk™, P " " ang
ual .[pel”, "Mangga", "Jeruk", "Pisang”, "Durian"] while angka <= 10:
for b in buah:

rint(f"Data ke-{angka}"
print(f"saya suka {b}") print({angka}")

if angka == 3:
print(“Berhenti di angka 3")
break
S5~ Saya suka Apel angka += 1
Saya suka Mangga
Saya suka Jeruk 5% Data ke-1
Saya suka Pisang Data ke-2
Saya suka Durian Data ke-3
Berhenti di angka 3
(a) Artifact examples on T3-1 (b) Artifact examples on T3-2
© print("=== APLIKASI TABEL PERKALIAN ===") © print("=== APLIKASI FPB & KPK ===")

a = int(input("Masukkan angka yang akan Anda buat menjadi tabel: ™)) a = int(input(“Masukkan bilangan pertama: *))

b = int(input(“Masukkan bilangan kedua: "))
for i in range(1, 11):
print("{@} x {1} = {2}".format(a, i, a*i)) # Mencari FPB dengan Algoritma Euclidean
X, y=a, b
while y:

0

=== APLIKASI TABEL PERKALIAN ===

Masukkan angka yang akan Anda buat menjadi tabel: 5 Lo Sy ey D AT) Qb

2 i ; i ie # Menghitung KPK
5x%3=15 kpk = (a * b) // x
5x4=20 orint(f°FPB dari {a} dan {b} adalah {x}")
5x5=25 print(f"kPK dari {a} dan {b} adalah {kpk}")
5x6 =30
5x7 =35 3% === APLIKASI FPB & KPK ===
5% 8 =40 Masukkan bilangan pertama: 2
5% 9 <45 Masukkan bilangan kedua: 6
5 x 10 = 50 FPB dari 2 dan 6 adalah 2
KPK dari 2 dan 6 adalah 6
(c) Artifact examples on T3-3 (d) Artifact examples on T3-4

Picture 5. Coding artifact example on Task 3

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
42 |

A learning trajectory for developing computational thinking in....

Picture 5 illustrates the use of looping functions to support mathematical learning.
The lesson begins by giving students the opportunity to try using the “for” (T3-1) and
“while” functions (Ts-2). Next, students were challenged to create a simple multiplication
application (Ts-3), where the user could enter any number using the “input” function. As
a result, the application displays the multiplication table of numbers from 1 to 10, as
shown in Picture 5(c). In the final session (T3-4), the students were challenged to create a
simple application to find the least common multiple (LCM) and the great common
divisor (GCD). The user is asked to input two numbers; the application displays the LCM
and GCD, as presented in Picture 5(d).

The results of observations and interviews showed that some students still
experienced “errors”. After the examination, errors were caused by inaccuracies in
writing the syntax. For example, after writing “for” or “while” at the end of the line, they
did not add “:”, so the program could not be run. Furthermore, in the last meeting of this
study, students learned the use of the “def” function and applied it in supporting math
learning, as presented in Picture 6.

[] def tambah(a,b): © def bagi(a,b): .5)
print(a+b) print(a/b) _nane_ = *_main
tambah(77,66) bagi(81,9) e T
a = float(input(K 1gka yang)
Sv 143 3¥ 9.9 R e

rint("DATA SALAH , HARAP
answer

if answer =
break

—_
—

def kali(a,b): def akér(a):
print(a*b) print(a**e.5)
kali(s,5) akar(225)

—

1 angka yang mau dicari : a
HARAP MASUKKAN ANGKA - -

ingin mencoba lagi? (y/n)y
dicari : 12

Apakah Anda ingin mencoba lagi? (y/n)y
M icari 9

15.0 asukkan angka yang mau dica

4
)

25

3.8
Apakah anda ingin mencoba lagi? (y/n)n

(b) Artifact examples on T4-2

smag_part

kah anda ingin melanjutkan? (y/a}: n

(c) Artifact examples on T4-3 (d) Artifact examples on Ts-4

Picture 6. Coding artifact example on Task 4

Picture 6 shows evidence of the utilization of the “def” function in supporting
mathematical computation. The lesson started by giving students the opportunity to try
using the “def” function (Ts1). Next, students were challenged to create a simple
application to find the root of a number (T4-2). Students can create an application to find
the root of a number, even by adding a looping function, where the program will keep
running if the user does not end using the “break” function, as presented in Picture 6(b).

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
| 43

Edi Irawan, Moh. Khoridatul Huda, & Ratni Purwasih

The developed application is slightly better than the previous one. If the user enters an
incorrect input, such as a letter, a warning notification appears, which is made by
utilising the “try” and “except ValueError” functions. Next, students are asked to create a
simple multiplication application using the “def” function (Ts-3). The user can enter any
number using the “input” function, and the application will display the multiplication
table of that number from 1 to 10, as presented in Picture 6(c). In the last session,
students were challenged to create a simple application to find the roots of a quadratic
equation (T4-4). As a result, students were able to create an application to determine the
roots of a quadratic equation, as presented in Figure 6(d), by combining various
functions previously learned.

Observations during the lesson found that some students experienced Python
syntax “errors”. Upon inspection, the errors were caused by inaccuracies in the syntax
writing. For example, after writing “if’, “elif”’, and “else”, at the end of the line, they did
not add a “:” sign, so the program could not be run. In addition, it was also found that
some students did not pay attention to indentation while writing the program; for
example, in the condition of writing “if”, “try”, or “while”, they did not indent the syntax
writing, resulting in “errors”.

Overall, the results of the HLT implementation show that students can gradually
understand the basic concepts of Python programming and apply them in mathematical
contexts. The application of Google Colab as a learning medium provides advantages,
especially in facilitating students who do not have personal devices (Ferreira et al,,
2024). In addition, the automatic saving feature, ease of code-sharing, and cloud-based
execution allow students to be more active in discussion and collaboration (Naik et al,,
2021).

The analysis also showed that most students’ errors in writing code were not
caused by an understanding of syntax or programming concepts but by a lack of
accuracy in writing code. The most common errors were negligence in writing
punctuation, such as lacking colons (:), quotation marks (" "), or incomplete parentheses
() in function calls. In addition, errors in indentation often occur because students ignore
the correct structure of code blocks according to Python rules. This finding aligns with
the research of Liu et al. (2023), which showed that most errors in beginner
programming are minor syntax errors due to a lack of attention to detail rather than
difficulties in understanding algorithmic concepts.

Several efforts have been made to overcome some of these problems. First, live
coding with error exploration was used. Lecturers write code to live by deliberately
inserting common errors and then discussing them with students to train their error
identification and correction skills (Strickroth, 2024). The second strategy is reflection-
based debugging. Students are encouraged to analyse error messages that appear when
running codes and record the errors they often make as a form of learning reflection
(Fitzgerald et al,, 2008; Yang et al., 2024). Third, peer code review. Students are asked to
review their friends’ code, so they are more thorough in evaluating it and understanding
the importance of syntax consistency and indentation (Lin et al., 2021). Finally, using the
" explains the error” menu on Google Colab. Encouraging students to use tools such as
"explain error"” in order to detect and correct syntax errors and correct them easily
because Gemini’s artificial intelligence facilities support it (Llerena-lzquierdo et al.,
2024).

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
44 |

A learning trajectory for developing computational thinking in....

Retrospective Analysis

The third stage of this research is a more retrospective analysis, which aims to
evaluate whether the HLT that has been developed and implemented previously can
facilitate the achievement of learning objectives. In accordance with what has been
determined previously, the development of this HLT aims to facilitate students in
creating simple mathematical applications by utilising various basic functions in Python
while honing their CT skills. The first objective of this HLT development has been proven
to be achieved, where students have successfully created simple applications using
Python, such as area and perimeter finding applications (T1-4), value conversion
applications (T2-3), generation identification applications (T2-4), multiplication table
generation application (T3-3), LCM and GCD finding applications (T3-4) and (T4-3), square
root finding application of a number (T4-2), and root finding application of a quadratic
equation (T4-4).

The identification of the role of programming utilisation in honing students’ CT is
based on coding artefacts and is supported by interview results. Both sets of data were
analysed using Atlas.ti software and the findings are presented in Picture 7.

Understanding pattems in i
lngping z
— . 3

g B

e P

'y > .
Develapment of skils to simplify Applcation of learmed patterns F part Dot ecoamion | 7t | | O Adaptaton of pattens tematic approach to fon of pseudocode
complex problem-solving in new tasks) J * | programming problem-solving in programming
™ B &
H H H o7
o 2 -
! s part of ol s part of 1
Shift in mincset when ; [. [Computatorai hning ¢ ; T iguitm)
structuring solutions 1 N |
ach i -
et £ z €
B g

is pantf

i 5 part of|
Understanding the concept of [e ——

reusable code

Wirting anly the necessary
wode

Initial cenfusion in developing

Bresking tacks nto semalles
comples programs

Implementation of planning
subtasks

before coding

Avarenessof e
simplificaton

Picture 7. Concept map of CT development in a Python programming course

The research findings presented in Picture 7 show that, based on coding artifacts,
observations, and interviews with students, it is known that learning programming can
hone their CT skills. First, the initial confusion in developing complex programs reflects
the indication that decomposition skills are honed out. However, they experience a
change in mindset when developing solutions by dividing tasks into smaller parts, thus
honing their skills in simplifying complex problems into simpler ones. Second, from the
abstraction aspect, students’ awareness of the importance of simplifying code,
understanding the concept of reusable code, realising the importance of code efficiency
and readability, and writing code that is really needed to solve the problem. Third, the
development of pattern recognition is reflected in the understanding of how patterns
are used in programming, using patterns in control structures such as if-else,
recognising patterns in the use of loops (for, while), applying learned patterns to new
tasks, and adjusting learned patterns to new programming contexts. Finally, students’
algorithm skills were honed through efforts to plan before writing code, write
pseudocode as the initial programming stage, build systematic, algorithmic thinking
patterns, and use a systematic approach to solve problems. This finding shows that, in

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
| 45

Edi Irawan, Moh. Khoridatul Huda, & Ratni Purwasih

general, Python coding learning implemented in accordance with the HLT developed can
hone students’ CT skills.

From a CT perspective, this learning includes four main elements, as defined by
Wing (2006, 2011) and further developed in recent studies (Shute et al., 2017; Weintrop
et al., 2015). First, in terms of decomposition. Students learn to break down problems
into small steps, such as developing programs to solve basic mathematical operations
(Dong et al., 2019). Second, from the abstraction perspective. Students can simplify
calculations and build modular programs (Grover & Pea, 2018) using functions and data
structures. Third, we considered pattern recognition. By looping through multiplication
tables and GCD, students identify patterns that can be reused in various programming
scenarios (Tang et al., 2020). Finally, we consider the aspect of the algorithm. Students
devise logical steps to reach a solution, such as devising algorithms for finding prime
numbers or sorting data (Roman-Gonzalez et al., 2019).

This study’s results reinforce previous studies’ findings, which showed that the
development of HLT can effectively facilitate the achievement of learning objectives
(Andrews-Larson et al,, 2017; Antonides & Battista, 2022; Clements et al,, 2020; Gane et
al,, 2021; Irawan, 2024; Kuswardi et al.,, 2024; Rianasari & Guzon, 2024; Rich et al,,
2022). In the future, the integration of more complex project-based learning can
improve students’ CT skills and deepen their understanding of Python programming in
the context of mathematics learning (Bai et al, 2021; Rais & Xuezhi, 2024; Ye et al,,
2023). In addition, implementing explicit debugging techniques as part of a learning
strategy can help students improve their rigor when writing code (Fitzgerald et al,
2008; Yang et al., 2024).

Conclusions and Suggestions

This study seeks to develop HLT in a programming course using Python at Google
Colab to hone prospective mathematics teachers’ CT skills. The findings show that the
developed HLT can facilitate the development of students’ CT in terms of decomposition,
abstraction, pattern recognition, and algorithms. Students showed an increased ability
to solve complex problems in smaller parts, making them easier to solve. Students also
improved in identifying important information needed to solve problems, patterns of
solving a problem based on their experience, and the ability to design problem-solving
algorithms systematically. In addition, the use of Python in Google Colab allows
programming learning to be accessible to students who do not have laptops or
computers. Overall, this study confirms that well-designed programming learning
through the preparation of HLT can serve as an effective strategy to hone the CT skills of
prospective mathematics teachers.

Despite its contributions, this study has some limitations that should be
considered. The limited duration of teaching may not be sufficient to ensure the long-
term sustainability and development of students’ CT skills. In addition, this study was
conducted specifically on prospective mathematics teacher students at one institution;
therefore, the generalizability of the findings is limited to populations with similar
characteristics. In addition, the assessment of the development of students’ CT skills was
analyzed qualitatively; therefore, generalization of the findings to a broader educational
context was not possible. To overcome the shortcomings of this study, future research
should combine quantitative methodology with standardized assessment instruments to
provide a more comprehensive evaluation. In addition, further studies should examine

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
46 |

A learning trajectory for developing computational thinking in....

the long-term impact of using HLT in teaching programming and explore the
development of more interactive learning strategies to improve prospective
mathematics teachers’ CT skills.

Acknowledgements

All authors would like to thank the students of the Computer Programming course for
their active participation and seriousness in learning Python using the HLT developed in
this study.

References

Aho, A. V. (2012). Computation and Computational Thinking. The Computer Journal,
55(7), 832-835. https://doi.org/10.1093 /comjnl/bxs074

Andrews-Larson, C, Wawro, M., & Zandieh, M. (2017). A Hypothetical Learning
Trajectory for Conceptualizing Matrices as Linear Transformations. International
Journal of Mathematical Education in Science and Technology, 48(6), 809-829.
https://doi.org/10.1080/0020739X.2016.1276225

Angeli, C., & Giannakos, M. (2020). Computational Thinking Education: Issues and
Challenges. Computers in Human Behavior, 105(106185), 1-8.
https://doi.org/10.1016/j.chb.2019.106185

Antonides,], & Battista, M. T. (2022). A Learning Trajectory for Enumerating
Permutations: Applying and Elaborating a Theory of Levels of Abstraction. The
Journal of Mathematical Behavior, 68, 101010.
https://doi.org/10.1016/j.jmathb.2022.101010

Badan Standar, Kurikulum, dan Asesmen Pendidikan Kementerian Pendidikan Dasar
dan Menengah Republik Indonesia. (2025). Naskah Akademik Pembelajaran Koding
dan Kecerdasan Artifisial pada Pendidikan Dasar dan Menengah. Pusat Kurikulum
dan Pembelajaran & Pusat Standar dan Kebijakan Pendidikan Kemendikdasmen.

Bai, H., Wang, X., & Zhao, L. (2021). Effects of the Problem-Oriented Learning Model on
Middle School Students’ Computational Thinking Skills in a Python Course. Frontiers
in Psychology, 12(1), 1-14. https://doi.org/10.3389 /fpsyg.2021.771221

Cansuy, F. K, & Cansuy, S. K. (2019). An Overview of Computational Thinking. International
Journal of Computer Science Education in Schools, 3(1), 17-30.
https://doi.org/10.21585/ijcses.v3il.53

Choi, W. C,, & Choi, I. C. (2024). The Influence of Codecombat on Computational Thinking
in Python Programming Learning at Primary School. 2024 5th International
Conference on Education Development and Studies, 26-32.
https://doi.org/10.1145/3669947.3669951

Clements, D. H., & Sarama, J. (2024). Systematic Review of Learning Trajectories in Early
Mathematics. ZDM - Mathematics Education, 14. https://doi.org/10.1007/s11858-
024-01644-1

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
| 47

Edi Irawan, Moh. Khoridatul Huda, & Ratni Purwasih

Clements, D. H., Sarama, J., Baroody, A. J., & Joswick, C. (2020). Efficacy of a Learning
Trajectory Approach Compared to a Teach-to-Target Approach for Addition and
Subtraction. ZDM, 52(4), 637-648. https://doi.org/10.1007 /s11858-019-01122-z

Corbin, J. M., & Strauss, A. L. (2015). Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory (Fourth edition). SAGE.

De Jesus, S., & Martinez, D. (2020). Applied Computational Thinking with Python: Design
Algorithmic Solutions for Complex and Challenging Real-World Problems. Packt
Publishing.

Denzin, N. K, & Lincoln, Y. S. (Eds.). (2018). The SAGE Handbook of Qualitative Research
(Fifth edition). SAGE.

Dong, Y., Catete, V., Jocius, R,, Lytle, N., Barnes, T., Albert,]., Joshi, D., Robinson, R, &
Andrews, A. (2019). PRADA: A Practical Model for Integrating Computational
Thinking in K-12 Education. Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, 906-912. https://doi.org/10.1145/3287324.3287431

Downey, A. (2024). Think Python: How to Think Like a Computer Scientist (Third edition).
O’Reilly Media, Inc.

Ferreira, R., Canesche, M., Jamieson, P., Neto, O. P. V., & Nacif, J]. A. M. (2024). Examples
and Tutorials on Using Google Colab and Gradio to Create Online Interactive

Student-Learning Modules. Computer Applications in Engineering Education, 32(4),
e22729. https://doi.org/10.1002/cae.22729

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., & Zander,
C. (2008). Debugging: Finding, Fixing and Flailing, a Multi-Institutional Study of
Novice = Debuggers. Computer Science Education, 18(2), 93-116.
https://doi.org/10.1080/08993400802114508

Gane, B. D,, Israel, M., Elagha, N., Yan, W,, Luo, F., & Pellegrino, J. W. (2021). Design and
Validation of Learning Trajectory-Based Assessments for Computational Thinking
in Upper Elementary Grades. Computer Science Education, 31(2), 141-168.
https://doi.org/10.1080/08993408.2021.1874221

Grover, S., & Pea, R. (2018). Computational Thinking: A Competency Whose Time Has
Come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer Science Education:

Perspectives on Teaching and Learning in School. Bloomsbury Academic.
https://doi.org/10.5040/9781350057142

Guillod,]J. (2024). Python Programming for Mathematics (1st ed.). Chapman and
Hall/CRC. https://doi.org/10.1201/9781003565451

Hsiao, T.-C., Chuang, Y.-H., Chang, C.-Y., Chen, T.-L., Zhang, H.-B., & Chang,].-C. (2023).
Combining Building Block Process with Computational Thinking Improves Learning

Outcomes of Python Programming with Peer Assessment. Sage Open, 13(4).
https://doi.org/10.1177/21582440231217715

llic, U., Haseski, H. I, & Tugtekin, U. (2018). Publication Trends Over 10 Years of
Computational Thinking Research. Contemporary Educational Technology, 9(2),
131-153. https://doi.org/10.30935/cet.414798

Irawan, E. (2024). Keterampilan Computational Thinking Mahasiswa Melalui Penerapan
Desain Didaktis Dengan Memanfaatkan Perangkat Lunak-R pada Mata Kuliah

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
48 |

A learning trajectory for developing computational thinking in....

Statistika [PhD Thesis, Universitas Pendidikan Indonesia].
https://repository.upi.edu/

Irawan, E., & Herman, T. (2023). Trends in Research on Interconnection of Mathematics
and Computational Thinking. AIP Conference Proceedings, 2805, 1-9.
https://doi.org/10.1063/5.0148018

Irawan, E. Rosjanuardi, R, & Prabawanto, S. (2024a). Promoting Computational
Thinking Through Programming Trends, Tools, and Educational Approaches: A
Systematic Review. Jurnal Teori Dan Aplikasi Matematika, 8(4), 1327-1348.
https://doi.org/10.31764 /jtam.v8i4.26407

[rawan, E., Rosjanuardi, R., & Prabawanto, S. (2024b). Research Trends of Computational
Thinking in Mathematics Learning: A Bibliometric Analysis from 2009 to 2023.
Eurasia Journal of Mathematics, Science and Technology Education, 20(3), 1-16.
https://doi.org/10.29333 /ejmste /14343

Jansen, P. (2025). TIOBE Index. Tiobe. https://www.tiobe.com/tiobe-index/

Jesas, S. de, & Martinez, D. (2023). Applied Computational Thinking with Python:
Algorithm Design for Complex Real-World Problems (Second edition). Packt
Publishing Ltd.

Kamak, L. P, & Mago, V. (2023). Assessing the Impact of Using Python to Teach
Computational Thinking for Remote Schools in a Blended Learning Environment. In
P. Zaphiris & A. loannou (Eds.), Learning and Collaboration Technologies (pp. 482-
500). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-34550-
0_35

Kim, J., Kim, M., Yu, H,, Kim, Y., & Kim, J. (2019). Effect of Data Visualization Education
with Using Python on Computational Thinking of Six Grade in Elementary School.
Journal of The Korean Association of Information Education, 23(3), 197-206.

Kong, S.-C., Lai, M., & Sun, D. (2020). Teacher Development in Computational Thinking:
Design and Learning Outcomes of Programming Concepts, Practices and Pedagogy.
Computers & Education, 151, 103872.
https://doi.org/10.1016/j.compedu.2020.103872

Kuroki, M. (2021). Using Python and Google Colab to Teach Undergraduate
Microeconomic Theory. International Review of Economics Education, 38, 100225.
https://doi.org/10.1016/j.iree.2021.100225

Kuswardi, Y., Nurhasanah, F., Firdaus, N. U. A, Usodo, B., Chrisnawati, H. E., Sutopo, S., &
Shahrill, M. (2024). A Learning Trajectory for Statistics Through the Traditional
Game of Congklak to Enhance Mathematical Reasoning Skills. International Journal
of Pedagogy and Teacher Education, 8(1), Article 1.
https://doi.org/10.20961 /ijpte.v8i1.90547

Lin, X,, Ma, Y., Ma, W,, Liu, Y., & Tang, W. (2021). Using Peer Code Review to Improve
Computational Thinking in a Blended Learning Environment: A Randomized
Control Trial. Computer Applications in Engineering Education, 29(6), 1825-1835.
https://doi.org/10.1002/cae.22425

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
49

Edi Irawan, Moh. Khoridatul Huda, & Ratni Purwasih

Liu, D, Feng, Y, Yan, Y, & Xu, B. (2023). Towards Understanding Bugs in Python
Interpreters. Empirical Software Engineering, 28(1), 19.
https://doi.org/10.1007 /s10664-022-10239-x

Llerena-lzquierdo,], Mendez-Reyes,], Ayala-Carabajo, R, & Andrade-Martinez, C.
(2024). Innovations in Introductory Programming Education: The Role of Al with
Google Colab and Gemini. Education Sciences, 14(12), 1330.
https://doi.org/10.3390/educsci14121330

Naik, P. G., Naik, G. R,, & Patil, M. B. (2021). Conceptualizing Python in Google Colab.
Shashwat Publication.

Palts, T., & Pedaste, M. (2020). A Model for Developing Computational Thinking Skills.
Informatics in Education, 19(1), 113-128. https://doi.org/10.15388/infedu.2020.06

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books.

Papert, S. (1996). An Exploration in the Space of Mathematics Educations. International
Journal of Computers for Mathematical Learning, 1(1).
https://doi.org/10.1007/BF00191473

Rais, D., & Xuezhi, Z. (2024). Elevating Student Engagement and Academic Performance:
A Quantitative Analysis of Python Programming Integration in the" Merdeka
Belajar" Curriculum. Journal on Mathematics Education, 15(2), 495-516.

Ren, H,, Yang, L., Jiang, L., Bai, Y., Lu, W,, & Chang, J. (2021). A Computational-Thinking-
Oriented Progressive Teaching Mode for Python Course. 2021 IEEE 3rd

International Conference on Computer Science and Educational Informatization
(CSEI), 81-84. https://doi.org/10.1109/CSEI51395.2021.9477642

Rianasari, V. F,, & Guzon, A. F. H. (2024). Designing Learning Trajectory to Support
Preservice Mathematics Teachers’ Skills in Creating and Implementing Realistic
Mathematics Tasks. Journal on Mathematics Education, 15(3), 701-716.
https://doi.org/10.22342 /jme.v15i3.pp701-716

Rich, K. M., Franklin, D., Strickland, C., Isaacs, A., & Eatinger, D. (2022). A Learning
Trajectory for Variables Based in Computational Thinking Literature: Using Levels
of Thinking to Develop Instruction. Computer Science Education, 32(2), 213-234.
https://doi.org/10.1080/08993408.2020.1866938

Rich, K. M,, Strickland, C., Binkowski, T. A.,, Moran, C., & Franklin, D. (2017). K-8 Learning
Trajectories Derived from Research Literature: Sequence, Repetition, Conditionals.
Proceedings of the 2017 ACM Conference on International Computing Education
Research, 182-190. https://doi.org/10.1145/3105726.3106166

Roman-Gonzalez, M., Moreno-Leoén, J., & Robles, G. (2019). Combining Assessment Tools
for a Comprehensive Evaluation of Computational Thinking Interventions. In S.-C.
Kong & H. Abelson (Eds.), Computational Thinking Education (pp. 79-98). Springer
Singapore. https://doi.org/10.1007/978-981-13-6528-7_6

Saha, A. (2015). Doing Math with Python: Use Programming to Explore Algebra, Statistics,
Calculus, and More! No Starch Press.

Shute, V.], Sun, C.,, & Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, 22, 142-158.
https://doi.org/10.1016/j.edurev.2017.09.003

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
50 |

A learning trajectory for developing computational thinking in....

Simon, M. A. (1995). Reconstructing Mathematics Pedagogy from a Constructivist
Perspective. Journal for Research in Mathematics Education, 26(2), 114-145.
https://doi.org/10.5951 /jresematheduc.26.2.0114

Simon, M. A. (2020). Hypothetical Learning Trajectories in Mathematics Education. In S.
Lerman (Ed.), Encyclopedia of Mathematics Education. Springer International
Publishing. https://doi.org/10.1007/978-3-030-15789-0

Simon, M. A, Kara, M., Placa, N., & Avitzur, A. (2018). Towards an Integrated Theory of
Mathematics Conceptual Learning and Instructional Design: The Learning Through
Activity Theoretical Framework. The Journal of Mathematical Behavior, 52, 95-112.
https://doi.org/10.1016/j.jmathb.2018.04.002

Simon, M. A, Placa, N., Kara, M., & Avitzur, A. (2018). Empirically-Based Hypothetical
Learning Trajectories for Fraction Concepts: Products of the Learning Through
Activity Research Program. The Journal of Mathematical Behavior, 52, 188-200.
https://doi.org/10.1016/j.jmathb.2018.03.003

Simon, M. A, & Tzur, R. (2004). Explicating the Role of Mathematical Tasks in Conceptual
Learning: An Elaboration of the Hypothetical Learning Trajectory. Mathematical
Thinking and Learning, 6(2), 91-104.
https://doi.org/10.1207/s15327833mtl0602_2

Strickroth, S. (2024). Scalable Feedback for Student Live Coding in Large Courses Using
Automatic Error Grouping. Proceedings of the 2024 on Innovation and Technology in
Computer Science Education V. 1, 499-505.
https://doi.org/10.1145/3649217.3653620

Sun, L., & Zhou, L. (2023). Does Text-Based Programming Improve K-12 Students’ Ct
Skills? Evidence from a Meta-Analysis and Synthesis of Qualitative Data in
Educational Contexts. Thinking Skills and Creativity, 49, 101340.

Suryadi, D. (2013). Didactical Design Research (DDR) to Improve the Teaching of
Mathematics. Far East Journal of Mathematical Education, 10(1), 91-107.

Suryadi, D. (2019). Penelitian Desain Didaktis (DDR) dan Implementasinya. Gapura Press.

Tang, X, Yin, Y, Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing Computational Thinking: A
Systematic Review of Empirical Studies. Computers & Education, 148(1), 1-22.
https://doi.org/10.1016/j.compedu.2019.103798

Tekdal, M. (2021). Trends and Development in Research on Computational Thinking.
Education and Information Technologies, 26(5), 6499-6529.
https://doi.org/10.1007/s10639-021-10617-w

Vallejo, W., Diaz-Uribe, C., & Fajardo, C. (2022). Google Colab and Virtual Simulations:
Practical E-Learning Tools to Support the Teaching of Thermodynamics and to
Introduce Coding to Students. ACS Omega, 7(8), 7421-74209.
https://doi.org/10.1021/acsomega.2c00362

Weij, X, Lin, L., Meng, N., Tan, W., Kong, S.-C., & Kinshuk. (2021). The Effectiveness of
Partial Pair Programming on Elementary School Students’ Computational Thinking
Skills and Self-Efficacy. Computers & Education, 160(104023), 1-65.
https://doi.org/10.1016/j.compedu.2020.104023

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
51

Edi Irawan, Moh. Khoridatul Huda, & Ratni Purwasih

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2015).
Defining Computational Thinking for Mathematics and Science Classrooms. Journal
of Science Education and Technology, 25(1), 127-147.
https://doi.org/10.1007 /s10956-015-9581-5

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2011). Research Notebook: Computational Thinking—What and Why?
Thelink, 1-8.

Wing, J. M. (2017). Computational Thinking’'s Influence on Research and Education for
All. Italian Journal of Educational Technology, 25(2), 7-14.
https://doi.org/10.17471/2499-4324 /922

Yang, S., Baird, M., O'Rourke, E., Brennan, K., & Schneider, B. (2024). Decoding Debugging
Instruction: A Systematic Literature Review of Debugging Interventions. ACM
Transactions on Computing Education, 24(4), 1-44.
https://doi.org/10.1145/3690652

Ye, H., Liang, B., Ng, O.-L., & Chai, C. S. (2023). Integration of Computational Thinking in
K-12 Mathematics Education: A Systematic Review on CT-Based Mathematics
Instruction and Student Learning. International Journal of STEM Education, 10(3),
1-26. https://doi.org/10.1186/s40594-023-00396-w

Zhuang, Y. Y., Kao, C.-W,, & Yen, W.-H. (2025). A Static Analysis Approach for Detecting
Array Shape Errors in Python. Journal of Information Science & Engineering, 41(1).
https://doi.org/10.6688/]ISE.202501_41(1).0006

Alifmatika: Jurnal Pendidikan dan Pembelajaran Matematika, June 2025, Vol. 7, No. 1
52 |

